In [30]:
import numpy as np
In [48]:
%run k_means_cluster.py
In [12]:
exercised_stock_options = []
for person in data_dict:
if data_dict[person]['exercised_stock_options'] != 'NaN':
exercised_stock_options.append(int(data_dict[person]['exercised_stock_options']))
print min(exercised_stock_options)
print max(exercised_stock_options)
In [13]:
salaries = []
for person in data_dict:
if data_dict[person]['salary'] != 'NaN':
salaries.append(int(data_dict[person]['salary']))
print min(salaries)
print max(salaries)
In [44]:
features_list
Out[44]:
In [40]:
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(finance_features)
Out[40]:
In [45]:
def scale(number, min_, max_):
if min_ != max_:
return float(number-min_)/(max_-min_)
else:
return 1
In [46]:
scale(200000, 477, 1111258)
Out[46]:
In [47]:
scale(1e6,3285,34348384)
Out[47]:
In [ ]: