In [1]:
import pandas as pd
In [2]:
data = pd.read_csv('Pokemon.csv', index_col='#')
In [ ]:
In [3]:
data.head()
Out[3]:
In [6]:
type(data['Name'])
Out[6]:
In [7]:
(data.Name == data['Name']).all()
Out[7]:
In [75]:
data['HP'].max()
Out[75]:
In [76]:
total_mas_grande = data.HP.max()
In [79]:
data[data.HP == total_mas_grande]
Out[79]:
In [80]:
data.Speed.mean()
Out[80]:
In [92]:
data[True == data['Legendary']]
Out[92]:
In [49]:
%matplotlib inline
In [61]:
data['Attack'].hist()
Out[61]:
In [62]:
data['Attack'].min()
Out[62]:
In [63]:
data['Attack'].max()
Out[63]:
In [98]:
data.groupby('Type 1')['Total'].mean().sort_values(ascending=False)
Out[98]:
In [ ]:
In [42]:
data.groupby('Type 2')['Total'].mean().sort_values(ascending=False)
Out[42]:
In [46]:
data.groupby(['Type 1', 'Type 2'])['Attack'].max().sort_values(ascending=False)
Out[46]:
In [49]:
import seaborn as sns
In [51]:
sns.jointplot(x='Sp. Atk', y='Sp. Def', data=data, kind='reg')
Out[51]:
In [50]:
data.head()
Out[50]:
In [53]:
sns.boxplot(data = data.drop(['Name', 'Total'], axis=1).head())
Out[53]: