インデックスとカラムの操作

scikit-learnのデータセットを使います。


In [4]:
import pandas as pd
from sklearn import datasets
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
print(X)
print(y)


[[ 0.03807591  0.05068012  0.06169621 ..., -0.00259226  0.01990842
  -0.01764613]
 [-0.00188202 -0.04464164 -0.05147406 ..., -0.03949338 -0.06832974
  -0.09220405]
 [ 0.08529891  0.05068012  0.04445121 ..., -0.00259226  0.00286377
  -0.02593034]
 ..., 
 [ 0.04170844  0.05068012 -0.01590626 ..., -0.01107952 -0.04687948
   0.01549073]
 [-0.04547248 -0.04464164  0.03906215 ...,  0.02655962  0.04452837
  -0.02593034]
 [-0.04547248 -0.04464164 -0.0730303  ..., -0.03949338 -0.00421986
   0.00306441]]
[ 151.   75.  141.  206.  135.   97.  138.   63.  110.  310.  101.   69.
  179.  185.  118.  171.  166.  144.   97.  168.   68.   49.   68.  245.
  184.  202.  137.   85.  131.  283.  129.   59.  341.   87.   65.  102.
  265.  276.  252.   90.  100.   55.   61.   92.  259.   53.  190.  142.
   75.  142.  155.  225.   59.  104.  182.  128.   52.   37.  170.  170.
   61.  144.   52.  128.   71.  163.  150.   97.  160.  178.   48.  270.
  202.  111.   85.   42.  170.  200.  252.  113.  143.   51.   52.  210.
   65.  141.   55.  134.   42.  111.   98.  164.   48.   96.   90.  162.
  150.  279.   92.   83.  128.  102.  302.  198.   95.   53.  134.  144.
  232.   81.  104.   59.  246.  297.  258.  229.  275.  281.  179.  200.
  200.  173.  180.   84.  121.  161.   99.  109.  115.  268.  274.  158.
  107.   83.  103.  272.   85.  280.  336.  281.  118.  317.  235.   60.
  174.  259.  178.  128.   96.  126.  288.   88.  292.   71.  197.  186.
   25.   84.   96.  195.   53.  217.  172.  131.  214.   59.   70.  220.
  268.  152.   47.   74.  295.  101.  151.  127.  237.  225.   81.  151.
  107.   64.  138.  185.  265.  101.  137.  143.  141.   79.  292.  178.
   91.  116.   86.  122.   72.  129.  142.   90.  158.   39.  196.  222.
  277.   99.  196.  202.  155.   77.  191.   70.   73.   49.   65.  263.
  248.  296.  214.  185.   78.   93.  252.  150.   77.  208.   77.  108.
  160.   53.  220.  154.  259.   90.  246.  124.   67.   72.  257.  262.
  275.  177.   71.   47.  187.  125.   78.   51.  258.  215.  303.  243.
   91.  150.  310.  153.  346.   63.   89.   50.   39.  103.  308.  116.
  145.   74.   45.  115.  264.   87.  202.  127.  182.  241.   66.   94.
  283.   64.  102.  200.  265.   94.  230.  181.  156.  233.   60.  219.
   80.   68.  332.  248.   84.  200.   55.   85.   89.   31.  129.   83.
  275.   65.  198.  236.  253.  124.   44.  172.  114.  142.  109.  180.
  144.  163.  147.   97.  220.  190.  109.  191.  122.  230.  242.  248.
  249.  192.  131.  237.   78.  135.  244.  199.  270.  164.   72.   96.
  306.   91.  214.   95.  216.  263.  178.  113.  200.  139.  139.   88.
  148.   88.  243.   71.   77.  109.  272.   60.   54.  221.   90.  311.
  281.  182.  321.   58.  262.  206.  233.  242.  123.  167.   63.  197.
   71.  168.  140.  217.  121.  235.  245.   40.   52.  104.  132.   88.
   69.  219.   72.  201.  110.   51.  277.   63.  118.   69.  273.  258.
   43.  198.  242.  232.  175.   93.  168.  275.  293.  281.   72.  140.
  189.  181.  209.  136.  261.  113.  131.  174.  257.   55.   84.   42.
  146.  212.  233.   91.  111.  152.  120.   67.  310.   94.  183.   66.
  173.   72.   49.   64.   48.  178.  104.  132.  220.   57.]

In [46]:
df_X = pd.DataFrame(X)
df_y = pd.DataFrame(y)

In [47]:
df_X


Out[47]:
0 1 2 3 4 5 6 7 8 9
0 0.038076 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646
1 -0.001882 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204
2 0.085299 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930
3 -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362
4 0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641
5 -0.092695 -0.044642 -0.040696 -0.019442 -0.068991 -0.079288 0.041277 -0.076395 -0.041180 -0.096346
6 -0.045472 0.050680 -0.047163 -0.015999 -0.040096 -0.024800 0.000779 -0.039493 -0.062913 -0.038357
7 0.063504 0.050680 -0.001895 0.066630 0.090620 0.108914 0.022869 0.017703 -0.035817 0.003064
8 0.041708 0.050680 0.061696 -0.040099 -0.013953 0.006202 -0.028674 -0.002592 -0.014956 0.011349
9 -0.070900 -0.044642 0.039062 -0.033214 -0.012577 -0.034508 -0.024993 -0.002592 0.067736 -0.013504
10 -0.096328 -0.044642 -0.083808 0.008101 -0.103389 -0.090561 -0.013948 -0.076395 -0.062913 -0.034215
11 0.027178 0.050680 0.017506 -0.033214 -0.007073 0.045972 -0.065491 0.071210 -0.096433 -0.059067
12 0.016281 -0.044642 -0.028840 -0.009113 -0.004321 -0.009769 0.044958 -0.039493 -0.030751 -0.042499
13 0.005383 0.050680 -0.001895 0.008101 -0.004321 -0.015719 -0.002903 -0.002592 0.038393 -0.013504
14 0.045341 -0.044642 -0.025607 -0.012556 0.017694 -0.000061 0.081775 -0.039493 -0.031991 -0.075636
15 -0.052738 0.050680 -0.018062 0.080401 0.089244 0.107662 -0.039719 0.108111 0.036056 -0.042499
16 -0.005515 -0.044642 0.042296 0.049415 0.024574 -0.023861 0.074412 -0.039493 0.052280 0.027917
17 0.070769 0.050680 0.012117 0.056301 0.034206 0.049416 -0.039719 0.034309 0.027368 -0.001078
18 -0.038207 -0.044642 -0.010517 -0.036656 -0.037344 -0.019476 -0.028674 -0.002592 -0.018118 -0.017646
19 -0.027310 -0.044642 -0.018062 -0.040099 -0.002945 -0.011335 0.037595 -0.039493 -0.008944 -0.054925
20 -0.049105 -0.044642 -0.056863 -0.043542 -0.045599 -0.043276 0.000779 -0.039493 -0.011901 0.015491
21 -0.085430 0.050680 -0.022373 0.001215 -0.037344 -0.026366 0.015505 -0.039493 -0.072128 -0.017646
22 -0.085430 -0.044642 -0.004050 -0.009113 -0.002945 0.007767 0.022869 -0.039493 -0.061177 -0.013504
23 0.045341 0.050680 0.060618 0.031053 0.028702 -0.047347 -0.054446 0.071210 0.133599 0.135612
24 -0.063635 -0.044642 0.035829 -0.022885 -0.030464 -0.018850 -0.006584 -0.002592 -0.025952 -0.054925
25 -0.067268 0.050680 -0.012673 -0.040099 -0.015328 0.004636 -0.058127 0.034309 0.019199 -0.034215
26 -0.107226 -0.044642 -0.077342 -0.026328 -0.089630 -0.096198 0.026550 -0.076395 -0.042572 -0.005220
27 -0.023677 -0.044642 0.059541 -0.040099 -0.042848 -0.043589 0.011824 -0.039493 -0.015998 0.040343
28 0.052606 -0.044642 -0.021295 -0.074528 -0.040096 -0.037639 -0.006584 -0.039493 -0.000609 -0.054925
29 0.067136 0.050680 -0.006206 0.063187 -0.042848 -0.095885 0.052322 -0.076395 0.059424 0.052770
... ... ... ... ... ... ... ... ... ... ...
412 0.074401 -0.044642 0.085408 0.063187 0.014942 0.013091 0.015505 -0.002592 0.006209 0.085907
413 -0.052738 -0.044642 -0.000817 -0.026328 0.010815 0.007141 0.048640 -0.039493 -0.035817 0.019633
414 0.081666 0.050680 0.006728 -0.004523 0.109883 0.117056 -0.032356 0.091875 0.054724 0.007207
415 -0.005515 -0.044642 0.008883 -0.050428 0.025950 0.047224 -0.043401 0.071210 0.014823 0.003064
416 -0.027310 -0.044642 0.080019 0.098763 -0.002945 0.018101 -0.017629 0.003312 -0.029528 0.036201
417 -0.052738 -0.044642 0.071397 -0.074528 -0.015328 -0.001314 0.004460 -0.021412 -0.046879 0.003064
418 0.009016 -0.044642 -0.024529 -0.026328 0.098876 0.094196 0.070730 -0.002592 -0.021394 0.007207
419 -0.020045 -0.044642 -0.054707 -0.053871 -0.066239 -0.057367 0.011824 -0.039493 -0.074089 -0.005220
420 0.023546 -0.044642 -0.036385 0.000068 0.001183 0.034698 -0.043401 0.034309 -0.033249 0.061054
421 0.038076 0.050680 0.016428 0.021872 0.039710 0.045032 -0.043401 0.071210 0.049769 0.015491
422 -0.078165 0.050680 0.077863 0.052858 0.078236 0.064447 0.026550 -0.002592 0.040672 -0.009362
423 0.009016 0.050680 -0.039618 0.028758 0.038334 0.073529 -0.072854 0.108111 0.015567 -0.046641
424 0.001751 0.050680 0.011039 -0.019442 -0.016704 -0.003819 -0.047082 0.034309 0.024053 0.023775
425 -0.078165 -0.044642 -0.040696 -0.081414 -0.100638 -0.112795 0.022869 -0.076395 -0.020289 -0.050783
426 0.030811 0.050680 -0.034229 0.043677 0.057597 0.068831 -0.032356 0.057557 0.035462 0.085907
427 -0.034575 0.050680 0.005650 -0.005671 -0.073119 -0.062691 -0.006584 -0.039493 -0.045421 0.032059
428 0.048974 0.050680 0.088642 0.087287 0.035582 0.021546 -0.024993 0.034309 0.066048 0.131470
429 -0.041840 -0.044642 -0.033151 -0.022885 0.046589 0.041587 0.056003 -0.024733 -0.025952 -0.038357
430 -0.009147 -0.044642 -0.056863 -0.050428 0.021822 0.045345 -0.028674 0.034309 -0.009919 -0.017646
431 0.070769 0.050680 -0.030996 0.021872 -0.037344 -0.047034 0.033914 -0.039493 -0.014956 -0.001078
432 0.009016 -0.044642 0.055229 -0.005671 0.057597 0.044719 -0.002903 0.023239 0.055684 0.106617
433 -0.027310 -0.044642 -0.060097 -0.029771 0.046589 0.019980 0.122273 -0.039493 -0.051401 -0.009362
434 0.016281 -0.044642 0.001339 0.008101 0.005311 0.010899 0.030232 -0.039493 -0.045421 0.032059
435 -0.012780 -0.044642 -0.023451 -0.040099 -0.016704 0.004636 -0.017629 -0.002592 -0.038459 -0.038357
436 -0.056370 -0.044642 -0.074108 -0.050428 -0.024960 -0.047034 0.092820 -0.076395 -0.061177 -0.046641
437 0.041708 0.050680 0.019662 0.059744 -0.005697 -0.002566 -0.028674 -0.002592 0.031193 0.007207
438 -0.005515 0.050680 -0.015906 -0.067642 0.049341 0.079165 -0.028674 0.034309 -0.018118 0.044485
439 0.041708 0.050680 -0.015906 0.017282 -0.037344 -0.013840 -0.024993 -0.011080 -0.046879 0.015491
440 -0.045472 -0.044642 0.039062 0.001215 0.016318 0.015283 -0.028674 0.026560 0.044528 -0.025930
441 -0.045472 -0.044642 -0.073030 -0.081414 0.083740 0.027809 0.173816 -0.039493 -0.004220 0.003064

442 rows × 10 columns


In [48]:
df_y.head(5)


Out[48]:
0
0 151.0
1 75.0
2 141.0
3 206.0
4 135.0

In [49]:
type(df_y)


Out[49]:
pandas.core.frame.DataFrame

In [50]:
characters = [chr(i) for i in range(97, 97+26)]
print(characters)


['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
列名を変更

In [51]:
df_X.columns = characters[:len(df_X.ix[0])]
df_X.head(5)


Out[51]:
a b c d e f g h i j
0 0.038076 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646
1 -0.001882 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204
2 0.085299 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930
3 -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362
4 0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641

maskの復習


In [52]:
df_X['a'] = df_X['a'].mask(df_X['a']>0,'T')

In [53]:
df_X['a'] = df_X['a'].mask(df_X['a']!='T','F')

In [54]:
df_X.head(10)


Out[54]:
a b c d e f g h i j
0 T 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646
1 F -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204
2 T 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930
3 F -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362
4 T -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641
5 F -0.044642 -0.040696 -0.019442 -0.068991 -0.079288 0.041277 -0.076395 -0.041180 -0.096346
6 F 0.050680 -0.047163 -0.015999 -0.040096 -0.024800 0.000779 -0.039493 -0.062913 -0.038357
7 T 0.050680 -0.001895 0.066630 0.090620 0.108914 0.022869 0.017703 -0.035817 0.003064
8 T 0.050680 0.061696 -0.040099 -0.013953 0.006202 -0.028674 -0.002592 -0.014956 0.011349
9 F -0.044642 0.039062 -0.033214 -0.012577 -0.034508 -0.024993 -0.002592 0.067736 -0.013504

In [55]:
k=[df_X.ix[i,'a']+str(df_X.index[i]) for i in df_X.index]#リスト内包表記は別途詳しく説明
k


Out[55]:
['T0',
 'F1',
 'T2',
 'F3',
 'T4',
 'F5',
 'F6',
 'T7',
 'T8',
 'F9',
 'F10',
 'T11',
 'T12',
 'T13',
 'T14',
 'F15',
 'F16',
 'T17',
 'F18',
 'F19',
 'F20',
 'F21',
 'F22',
 'T23',
 'F24',
 'F25',
 'F26',
 'F27',
 'T28',
 'T29',
 'F30',
 'F31',
 'T32',
 'T33',
 'T34',
 'T35',
 'T36',
 'F37',
 'F38',
 'F39',
 'T40',
 'F41',
 'F42',
 'T43',
 'T44',
 'T45',
 'F46',
 'F47',
 'T48',
 'F49',
 'T50',
 'T51',
 'F52',
 'F53',
 'F54',
 'F55',
 'F56',
 'F57',
 'T58',
 'T59',
 'F60',
 'F61',
 'F62',
 'F63',
 'T64',
 'F65',
 'F66',
 'T67',
 'T68',
 'T69',
 'F70',
 'F71',
 'T72',
 'T73',
 'T74',
 'F75',
 'F76',
 'F77',
 'T78',
 'F79',
 'T80',
 'T81',
 'F82',
 'F83',
 'T84',
 'T85',
 'F86',
 'T87',
 'F88',
 'F89',
 'T90',
 'T91',
 'F92',
 'F93',
 'F94',
 'F95',
 'T96',
 'F97',
 'T98',
 'F99',
 'T100',
 'T101',
 'F102',
 'T103',
 'F104',
 'T105',
 'F106',
 'T107',
 'T108',
 'T109',
 'T110',
 'T111',
 'F112',
 'T113',
 'T114',
 'F115',
 'T116',
 'T117',
 'F118',
 'T119',
 'F120',
 'T121',
 'T122',
 'T123',
 'F124',
 'F125',
 'F126',
 'T127',
 'F128',
 'T129',
 'F130',
 'F131',
 'T132',
 'F133',
 'F134',
 'F135',
 'F136',
 'T137',
 'T138',
 'T139',
 'T140',
 'F141',
 'T142',
 'F143',
 'T144',
 'F145',
 'F146',
 'F147',
 'F148',
 'F149',
 'T150',
 'T151',
 'F152',
 'T153',
 'T154',
 'F155',
 'F156',
 'F157',
 'F158',
 'F159',
 'F160',
 'F161',
 'F162',
 'T163',
 'T164',
 'F165',
 'F166',
 'T167',
 'T168',
 'F169',
 'T170',
 'F171',
 'T172',
 'F173',
 'T174',
 'T175',
 'T176',
 'T177',
 'T178',
 'F179',
 'F180',
 'T181',
 'T182',
 'T183',
 'T184',
 'F185',
 'F186',
 'F187',
 'T188',
 'F189',
 'T190',
 'F191',
 'T192',
 'T193',
 'F194',
 'T195',
 'F196',
 'T197',
 'F198',
 'T199',
 'T200',
 'F201',
 'T202',
 'F203',
 'T204',
 'F205',
 'T206',
 'T207',
 'T208',
 'T209',
 'T210',
 'T211',
 'T212',
 'T213',
 'T214',
 'T215',
 'T216',
 'T217',
 'F218',
 'F219',
 'T220',
 'F221',
 'F222',
 'F223',
 'F224',
 'T225',
 'F226',
 'T227',
 'F228',
 'F229',
 'F230',
 'T231',
 'T232',
 'T233',
 'T234',
 'T235',
 'T236',
 'T237',
 'T238',
 'T239',
 'T240',
 'T241',
 'F242',
 'T243',
 'F244',
 'F245',
 'T246',
 'F247',
 'F248',
 'F249',
 'T250',
 'F251',
 'T252',
 'T253',
 'T254',
 'T255',
 'F256',
 'F257',
 'T258',
 'T259',
 'T260',
 'T261',
 'F262',
 'F263',
 'T264',
 'F265',
 'F266',
 'T267',
 'T268',
 'T269',
 'T270',
 'T271',
 'T272',
 'T273',
 'T274',
 'F275',
 'T276',
 'F277',
 'T278',
 'T279',
 'T280',
 'F281',
 'T282',
 'F283',
 'T284',
 'T285',
 'F286',
 'T287',
 'T288',
 'F289',
 'T290',
 'T291',
 'T292',
 'F293',
 'T294',
 'F295',
 'T296',
 'T297',
 'T298',
 'T299',
 'T300',
 'F301',
 'T302',
 'T303',
 'T304',
 'F305',
 'T306',
 'T307',
 'T308',
 'F309',
 'F310',
 'T311',
 'F312',
 'T313',
 'F314',
 'T315',
 'T316',
 'T317',
 'T318',
 'T319',
 'F320',
 'T321',
 'T322',
 'T323',
 'T324',
 'F325',
 'T326',
 'T327',
 'F328',
 'F329',
 'T330',
 'T331',
 'T332',
 'T333',
 'F334',
 'T335',
 'F336',
 'T337',
 'F338',
 'T339',
 'F340',
 'T341',
 'T342',
 'F343',
 'F344',
 'T345',
 'T346',
 'T347',
 'T348',
 'T349',
 'F350',
 'F351',
 'T352',
 'F353',
 'F354',
 'F355',
 'F356',
 'F357',
 'F358',
 'T359',
 'T360',
 'T361',
 'T362',
 'F363',
 'T364',
 'T365',
 'F366',
 'F367',
 'F368',
 'F369',
 'T370',
 'T371',
 'F372',
 'F373',
 'F374',
 'T375',
 'F376',
 'T377',
 'T378',
 'F379',
 'T380',
 'F381',
 'T382',
 'T383',
 'T384',
 'T385',
 'T386',
 'F387',
 'T388',
 'F389',
 'T390',
 'F391',
 'F392',
 'F393',
 'T394',
 'F395',
 'F396',
 'T397',
 'T398',
 'T399',
 'F400',
 'T401',
 'T402',
 'F403',
 'F404',
 'T405',
 'F406',
 'T407',
 'T408',
 'F409',
 'F410',
 'T411',
 'T412',
 'F413',
 'T414',
 'F415',
 'F416',
 'F417',
 'T418',
 'F419',
 'T420',
 'T421',
 'F422',
 'T423',
 'T424',
 'F425',
 'T426',
 'F427',
 'T428',
 'F429',
 'F430',
 'T431',
 'T432',
 'F433',
 'T434',
 'F435',
 'F436',
 'T437',
 'F438',
 'T439',
 'F440',
 'F441']

新たに列を追加


In [56]:
df_X['k']=k

In [57]:
df_X.head(5)


Out[57]:
a b c d e f g h i j k
0 T 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646 T0
1 F -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204 F1
2 T 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930 T2
3 F -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362 F3
4 T -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641 T4

インデックスをデータの中に追加


In [58]:
df_X['index']=df_X.index
df_X.head(5)


Out[58]:
a b c d e f g h i j k index
0 T 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646 T0 0
1 F -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204 F1 1
2 T 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930 T2 2
3 F -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362 F3 3
4 T -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641 T4 4

In [59]:
ran = list(range(0,450))
ran.reverse()
ran


Out[59]:
[449,
 448,
 447,
 446,
 445,
 444,
 443,
 442,
 441,
 440,
 439,
 438,
 437,
 436,
 435,
 434,
 433,
 432,
 431,
 430,
 429,
 428,
 427,
 426,
 425,
 424,
 423,
 422,
 421,
 420,
 419,
 418,
 417,
 416,
 415,
 414,
 413,
 412,
 411,
 410,
 409,
 408,
 407,
 406,
 405,
 404,
 403,
 402,
 401,
 400,
 399,
 398,
 397,
 396,
 395,
 394,
 393,
 392,
 391,
 390,
 389,
 388,
 387,
 386,
 385,
 384,
 383,
 382,
 381,
 380,
 379,
 378,
 377,
 376,
 375,
 374,
 373,
 372,
 371,
 370,
 369,
 368,
 367,
 366,
 365,
 364,
 363,
 362,
 361,
 360,
 359,
 358,
 357,
 356,
 355,
 354,
 353,
 352,
 351,
 350,
 349,
 348,
 347,
 346,
 345,
 344,
 343,
 342,
 341,
 340,
 339,
 338,
 337,
 336,
 335,
 334,
 333,
 332,
 331,
 330,
 329,
 328,
 327,
 326,
 325,
 324,
 323,
 322,
 321,
 320,
 319,
 318,
 317,
 316,
 315,
 314,
 313,
 312,
 311,
 310,
 309,
 308,
 307,
 306,
 305,
 304,
 303,
 302,
 301,
 300,
 299,
 298,
 297,
 296,
 295,
 294,
 293,
 292,
 291,
 290,
 289,
 288,
 287,
 286,
 285,
 284,
 283,
 282,
 281,
 280,
 279,
 278,
 277,
 276,
 275,
 274,
 273,
 272,
 271,
 270,
 269,
 268,
 267,
 266,
 265,
 264,
 263,
 262,
 261,
 260,
 259,
 258,
 257,
 256,
 255,
 254,
 253,
 252,
 251,
 250,
 249,
 248,
 247,
 246,
 245,
 244,
 243,
 242,
 241,
 240,
 239,
 238,
 237,
 236,
 235,
 234,
 233,
 232,
 231,
 230,
 229,
 228,
 227,
 226,
 225,
 224,
 223,
 222,
 221,
 220,
 219,
 218,
 217,
 216,
 215,
 214,
 213,
 212,
 211,
 210,
 209,
 208,
 207,
 206,
 205,
 204,
 203,
 202,
 201,
 200,
 199,
 198,
 197,
 196,
 195,
 194,
 193,
 192,
 191,
 190,
 189,
 188,
 187,
 186,
 185,
 184,
 183,
 182,
 181,
 180,
 179,
 178,
 177,
 176,
 175,
 174,
 173,
 172,
 171,
 170,
 169,
 168,
 167,
 166,
 165,
 164,
 163,
 162,
 161,
 160,
 159,
 158,
 157,
 156,
 155,
 154,
 153,
 152,
 151,
 150,
 149,
 148,
 147,
 146,
 145,
 144,
 143,
 142,
 141,
 140,
 139,
 138,
 137,
 136,
 135,
 134,
 133,
 132,
 131,
 130,
 129,
 128,
 127,
 126,
 125,
 124,
 123,
 122,
 121,
 120,
 119,
 118,
 117,
 116,
 115,
 114,
 113,
 112,
 111,
 110,
 109,
 108,
 107,
 106,
 105,
 104,
 103,
 102,
 101,
 100,
 99,
 98,
 97,
 96,
 95,
 94,
 93,
 92,
 91,
 90,
 89,
 88,
 87,
 86,
 85,
 84,
 83,
 82,
 81,
 80,
 79,
 78,
 77,
 76,
 75,
 74,
 73,
 72,
 71,
 70,
 69,
 68,
 67,
 66,
 65,
 64,
 63,
 62,
 61,
 60,
 59,
 58,
 57,
 56,
 55,
 54,
 53,
 52,
 51,
 50,
 49,
 48,
 47,
 46,
 45,
 44,
 43,
 42,
 41,
 40,
 39,
 38,
 37,
 36,
 35,
 34,
 33,
 32,
 31,
 30,
 29,
 28,
 27,
 26,
 25,
 24,
 23,
 22,
 21,
 20,
 19,
 18,
 17,
 16,
 15,
 14,
 13,
 12,
 11,
 10,
 9,
 8,
 7,
 6,
 5,
 4,
 3,
 2,
 1,
 0]

In [60]:
df_X.reindex(ran)


Out[60]:
a b c d e f g h i j k index
449 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
448 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
447 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
446 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
445 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
444 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
443 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
442 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
441 F -0.044642 -0.073030 -0.081414 0.083740 0.027809 0.173816 -0.039493 -0.004220 0.003064 F441 441.0
440 F -0.044642 0.039062 0.001215 0.016318 0.015283 -0.028674 0.026560 0.044528 -0.025930 F440 440.0
439 T 0.050680 -0.015906 0.017282 -0.037344 -0.013840 -0.024993 -0.011080 -0.046879 0.015491 T439 439.0
438 F 0.050680 -0.015906 -0.067642 0.049341 0.079165 -0.028674 0.034309 -0.018118 0.044485 F438 438.0
437 T 0.050680 0.019662 0.059744 -0.005697 -0.002566 -0.028674 -0.002592 0.031193 0.007207 T437 437.0
436 F -0.044642 -0.074108 -0.050428 -0.024960 -0.047034 0.092820 -0.076395 -0.061177 -0.046641 F436 436.0
435 F -0.044642 -0.023451 -0.040099 -0.016704 0.004636 -0.017629 -0.002592 -0.038459 -0.038357 F435 435.0
434 T -0.044642 0.001339 0.008101 0.005311 0.010899 0.030232 -0.039493 -0.045421 0.032059 T434 434.0
433 F -0.044642 -0.060097 -0.029771 0.046589 0.019980 0.122273 -0.039493 -0.051401 -0.009362 F433 433.0
432 T -0.044642 0.055229 -0.005671 0.057597 0.044719 -0.002903 0.023239 0.055684 0.106617 T432 432.0
431 T 0.050680 -0.030996 0.021872 -0.037344 -0.047034 0.033914 -0.039493 -0.014956 -0.001078 T431 431.0
430 F -0.044642 -0.056863 -0.050428 0.021822 0.045345 -0.028674 0.034309 -0.009919 -0.017646 F430 430.0
429 F -0.044642 -0.033151 -0.022885 0.046589 0.041587 0.056003 -0.024733 -0.025952 -0.038357 F429 429.0
428 T 0.050680 0.088642 0.087287 0.035582 0.021546 -0.024993 0.034309 0.066048 0.131470 T428 428.0
427 F 0.050680 0.005650 -0.005671 -0.073119 -0.062691 -0.006584 -0.039493 -0.045421 0.032059 F427 427.0
426 T 0.050680 -0.034229 0.043677 0.057597 0.068831 -0.032356 0.057557 0.035462 0.085907 T426 426.0
425 F -0.044642 -0.040696 -0.081414 -0.100638 -0.112795 0.022869 -0.076395 -0.020289 -0.050783 F425 425.0
424 T 0.050680 0.011039 -0.019442 -0.016704 -0.003819 -0.047082 0.034309 0.024053 0.023775 T424 424.0
423 T 0.050680 -0.039618 0.028758 0.038334 0.073529 -0.072854 0.108111 0.015567 -0.046641 T423 423.0
422 F 0.050680 0.077863 0.052858 0.078236 0.064447 0.026550 -0.002592 0.040672 -0.009362 F422 422.0
421 T 0.050680 0.016428 0.021872 0.039710 0.045032 -0.043401 0.071210 0.049769 0.015491 T421 421.0
420 T -0.044642 -0.036385 0.000068 0.001183 0.034698 -0.043401 0.034309 -0.033249 0.061054 T420 420.0
... ... ... ... ... ... ... ... ... ... ... ... ...
29 T 0.050680 -0.006206 0.063187 -0.042848 -0.095885 0.052322 -0.076395 0.059424 0.052770 T29 29.0
28 T -0.044642 -0.021295 -0.074528 -0.040096 -0.037639 -0.006584 -0.039493 -0.000609 -0.054925 T28 28.0
27 F -0.044642 0.059541 -0.040099 -0.042848 -0.043589 0.011824 -0.039493 -0.015998 0.040343 F27 27.0
26 F -0.044642 -0.077342 -0.026328 -0.089630 -0.096198 0.026550 -0.076395 -0.042572 -0.005220 F26 26.0
25 F 0.050680 -0.012673 -0.040099 -0.015328 0.004636 -0.058127 0.034309 0.019199 -0.034215 F25 25.0
24 F -0.044642 0.035829 -0.022885 -0.030464 -0.018850 -0.006584 -0.002592 -0.025952 -0.054925 F24 24.0
23 T 0.050680 0.060618 0.031053 0.028702 -0.047347 -0.054446 0.071210 0.133599 0.135612 T23 23.0
22 F -0.044642 -0.004050 -0.009113 -0.002945 0.007767 0.022869 -0.039493 -0.061177 -0.013504 F22 22.0
21 F 0.050680 -0.022373 0.001215 -0.037344 -0.026366 0.015505 -0.039493 -0.072128 -0.017646 F21 21.0
20 F -0.044642 -0.056863 -0.043542 -0.045599 -0.043276 0.000779 -0.039493 -0.011901 0.015491 F20 20.0
19 F -0.044642 -0.018062 -0.040099 -0.002945 -0.011335 0.037595 -0.039493 -0.008944 -0.054925 F19 19.0
18 F -0.044642 -0.010517 -0.036656 -0.037344 -0.019476 -0.028674 -0.002592 -0.018118 -0.017646 F18 18.0
17 T 0.050680 0.012117 0.056301 0.034206 0.049416 -0.039719 0.034309 0.027368 -0.001078 T17 17.0
16 F -0.044642 0.042296 0.049415 0.024574 -0.023861 0.074412 -0.039493 0.052280 0.027917 F16 16.0
15 F 0.050680 -0.018062 0.080401 0.089244 0.107662 -0.039719 0.108111 0.036056 -0.042499 F15 15.0
14 T -0.044642 -0.025607 -0.012556 0.017694 -0.000061 0.081775 -0.039493 -0.031991 -0.075636 T14 14.0
13 T 0.050680 -0.001895 0.008101 -0.004321 -0.015719 -0.002903 -0.002592 0.038393 -0.013504 T13 13.0
12 T -0.044642 -0.028840 -0.009113 -0.004321 -0.009769 0.044958 -0.039493 -0.030751 -0.042499 T12 12.0
11 T 0.050680 0.017506 -0.033214 -0.007073 0.045972 -0.065491 0.071210 -0.096433 -0.059067 T11 11.0
10 F -0.044642 -0.083808 0.008101 -0.103389 -0.090561 -0.013948 -0.076395 -0.062913 -0.034215 F10 10.0
9 F -0.044642 0.039062 -0.033214 -0.012577 -0.034508 -0.024993 -0.002592 0.067736 -0.013504 F9 9.0
8 T 0.050680 0.061696 -0.040099 -0.013953 0.006202 -0.028674 -0.002592 -0.014956 0.011349 T8 8.0
7 T 0.050680 -0.001895 0.066630 0.090620 0.108914 0.022869 0.017703 -0.035817 0.003064 T7 7.0
6 F 0.050680 -0.047163 -0.015999 -0.040096 -0.024800 0.000779 -0.039493 -0.062913 -0.038357 F6 6.0
5 F -0.044642 -0.040696 -0.019442 -0.068991 -0.079288 0.041277 -0.076395 -0.041180 -0.096346 F5 5.0
4 T -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641 T4 4.0
3 F -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362 F3 3.0
2 T 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930 T2 2.0
1 F -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204 F1 1.0
0 T 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646 T0 0.0

450 rows × 12 columns


In [45]:



Out[45]:
a b c d e f g h i j k index
449 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
448 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
447 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
446 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
445 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
444 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
443 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
442 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
441 F -0.044642 -0.073030 -0.081414 0.083740 0.027809 0.173816 -0.039493 -0.004220 0.003064 F441 441.0
440 F -0.044642 0.039062 0.001215 0.016318 0.015283 -0.028674 0.026560 0.044528 -0.025930 F440 440.0
439 T 0.050680 -0.015906 0.017282 -0.037344 -0.013840 -0.024993 -0.011080 -0.046879 0.015491 T439 439.0
438 F 0.050680 -0.015906 -0.067642 0.049341 0.079165 -0.028674 0.034309 -0.018118 0.044485 F438 438.0
437 T 0.050680 0.019662 0.059744 -0.005697 -0.002566 -0.028674 -0.002592 0.031193 0.007207 T437 437.0
436 F -0.044642 -0.074108 -0.050428 -0.024960 -0.047034 0.092820 -0.076395 -0.061177 -0.046641 F436 436.0
435 F -0.044642 -0.023451 -0.040099 -0.016704 0.004636 -0.017629 -0.002592 -0.038459 -0.038357 F435 435.0
434 T -0.044642 0.001339 0.008101 0.005311 0.010899 0.030232 -0.039493 -0.045421 0.032059 T434 434.0
433 F -0.044642 -0.060097 -0.029771 0.046589 0.019980 0.122273 -0.039493 -0.051401 -0.009362 F433 433.0
432 T -0.044642 0.055229 -0.005671 0.057597 0.044719 -0.002903 0.023239 0.055684 0.106617 T432 432.0
431 T 0.050680 -0.030996 0.021872 -0.037344 -0.047034 0.033914 -0.039493 -0.014956 -0.001078 T431 431.0
430 F -0.044642 -0.056863 -0.050428 0.021822 0.045345 -0.028674 0.034309 -0.009919 -0.017646 F430 430.0
429 F -0.044642 -0.033151 -0.022885 0.046589 0.041587 0.056003 -0.024733 -0.025952 -0.038357 F429 429.0
428 T 0.050680 0.088642 0.087287 0.035582 0.021546 -0.024993 0.034309 0.066048 0.131470 T428 428.0
427 F 0.050680 0.005650 -0.005671 -0.073119 -0.062691 -0.006584 -0.039493 -0.045421 0.032059 F427 427.0
426 T 0.050680 -0.034229 0.043677 0.057597 0.068831 -0.032356 0.057557 0.035462 0.085907 T426 426.0
425 F -0.044642 -0.040696 -0.081414 -0.100638 -0.112795 0.022869 -0.076395 -0.020289 -0.050783 F425 425.0
424 T 0.050680 0.011039 -0.019442 -0.016704 -0.003819 -0.047082 0.034309 0.024053 0.023775 T424 424.0
423 T 0.050680 -0.039618 0.028758 0.038334 0.073529 -0.072854 0.108111 0.015567 -0.046641 T423 423.0
422 F 0.050680 0.077863 0.052858 0.078236 0.064447 0.026550 -0.002592 0.040672 -0.009362 F422 422.0
421 T 0.050680 0.016428 0.021872 0.039710 0.045032 -0.043401 0.071210 0.049769 0.015491 T421 421.0
420 T -0.044642 -0.036385 0.000068 0.001183 0.034698 -0.043401 0.034309 -0.033249 0.061054 T420 420.0
... ... ... ... ... ... ... ... ... ... ... ... ...
29 T 0.050680 -0.006206 0.063187 -0.042848 -0.095885 0.052322 -0.076395 0.059424 0.052770 T29 29.0
28 T -0.044642 -0.021295 -0.074528 -0.040096 -0.037639 -0.006584 -0.039493 -0.000609 -0.054925 T28 28.0
27 F -0.044642 0.059541 -0.040099 -0.042848 -0.043589 0.011824 -0.039493 -0.015998 0.040343 F27 27.0
26 F -0.044642 -0.077342 -0.026328 -0.089630 -0.096198 0.026550 -0.076395 -0.042572 -0.005220 F26 26.0
25 F 0.050680 -0.012673 -0.040099 -0.015328 0.004636 -0.058127 0.034309 0.019199 -0.034215 F25 25.0
24 F -0.044642 0.035829 -0.022885 -0.030464 -0.018850 -0.006584 -0.002592 -0.025952 -0.054925 F24 24.0
23 T 0.050680 0.060618 0.031053 0.028702 -0.047347 -0.054446 0.071210 0.133599 0.135612 T23 23.0
22 F -0.044642 -0.004050 -0.009113 -0.002945 0.007767 0.022869 -0.039493 -0.061177 -0.013504 F22 22.0
21 F 0.050680 -0.022373 0.001215 -0.037344 -0.026366 0.015505 -0.039493 -0.072128 -0.017646 F21 21.0
20 F -0.044642 -0.056863 -0.043542 -0.045599 -0.043276 0.000779 -0.039493 -0.011901 0.015491 F20 20.0
19 F -0.044642 -0.018062 -0.040099 -0.002945 -0.011335 0.037595 -0.039493 -0.008944 -0.054925 F19 19.0
18 F -0.044642 -0.010517 -0.036656 -0.037344 -0.019476 -0.028674 -0.002592 -0.018118 -0.017646 F18 18.0
17 T 0.050680 0.012117 0.056301 0.034206 0.049416 -0.039719 0.034309 0.027368 -0.001078 T17 17.0
16 F -0.044642 0.042296 0.049415 0.024574 -0.023861 0.074412 -0.039493 0.052280 0.027917 F16 16.0
15 F 0.050680 -0.018062 0.080401 0.089244 0.107662 -0.039719 0.108111 0.036056 -0.042499 F15 15.0
14 T -0.044642 -0.025607 -0.012556 0.017694 -0.000061 0.081775 -0.039493 -0.031991 -0.075636 T14 14.0
13 T 0.050680 -0.001895 0.008101 -0.004321 -0.015719 -0.002903 -0.002592 0.038393 -0.013504 T13 13.0
12 T -0.044642 -0.028840 -0.009113 -0.004321 -0.009769 0.044958 -0.039493 -0.030751 -0.042499 T12 12.0
11 T 0.050680 0.017506 -0.033214 -0.007073 0.045972 -0.065491 0.071210 -0.096433 -0.059067 T11 11.0
10 F -0.044642 -0.083808 0.008101 -0.103389 -0.090561 -0.013948 -0.076395 -0.062913 -0.034215 F10 10.0
9 F -0.044642 0.039062 -0.033214 -0.012577 -0.034508 -0.024993 -0.002592 0.067736 -0.013504 F9 9.0
8 T 0.050680 0.061696 -0.040099 -0.013953 0.006202 -0.028674 -0.002592 -0.014956 0.011349 T8 8.0
7 T 0.050680 -0.001895 0.066630 0.090620 0.108914 0.022869 0.017703 -0.035817 0.003064 T7 7.0
6 F 0.050680 -0.047163 -0.015999 -0.040096 -0.024800 0.000779 -0.039493 -0.062913 -0.038357 F6 6.0
5 F -0.044642 -0.040696 -0.019442 -0.068991 -0.079288 0.041277 -0.076395 -0.041180 -0.096346 F5 5.0
4 T -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641 T4 4.0
3 F -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362 F3 3.0
2 T 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930 T2 2.0
1 F -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204 F1 1.0
0 T 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646 T0 0.0

450 rows × 12 columns


In [61]:
df_X=df_X.set_index('k')


Out[61]:
a b c d e f g h i j index
k
T0 T 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646 0
F1 F -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204 1
T2 T 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930 2
F3 F -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362 3
T4 T -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641 4
F5 F -0.044642 -0.040696 -0.019442 -0.068991 -0.079288 0.041277 -0.076395 -0.041180 -0.096346 5
F6 F 0.050680 -0.047163 -0.015999 -0.040096 -0.024800 0.000779 -0.039493 -0.062913 -0.038357 6
T7 T 0.050680 -0.001895 0.066630 0.090620 0.108914 0.022869 0.017703 -0.035817 0.003064 7
T8 T 0.050680 0.061696 -0.040099 -0.013953 0.006202 -0.028674 -0.002592 -0.014956 0.011349 8
F9 F -0.044642 0.039062 -0.033214 -0.012577 -0.034508 -0.024993 -0.002592 0.067736 -0.013504 9
F10 F -0.044642 -0.083808 0.008101 -0.103389 -0.090561 -0.013948 -0.076395 -0.062913 -0.034215 10
T11 T 0.050680 0.017506 -0.033214 -0.007073 0.045972 -0.065491 0.071210 -0.096433 -0.059067 11
T12 T -0.044642 -0.028840 -0.009113 -0.004321 -0.009769 0.044958 -0.039493 -0.030751 -0.042499 12
T13 T 0.050680 -0.001895 0.008101 -0.004321 -0.015719 -0.002903 -0.002592 0.038393 -0.013504 13
T14 T -0.044642 -0.025607 -0.012556 0.017694 -0.000061 0.081775 -0.039493 -0.031991 -0.075636 14
F15 F 0.050680 -0.018062 0.080401 0.089244 0.107662 -0.039719 0.108111 0.036056 -0.042499 15
F16 F -0.044642 0.042296 0.049415 0.024574 -0.023861 0.074412 -0.039493 0.052280 0.027917 16
T17 T 0.050680 0.012117 0.056301 0.034206 0.049416 -0.039719 0.034309 0.027368 -0.001078 17
F18 F -0.044642 -0.010517 -0.036656 -0.037344 -0.019476 -0.028674 -0.002592 -0.018118 -0.017646 18
F19 F -0.044642 -0.018062 -0.040099 -0.002945 -0.011335 0.037595 -0.039493 -0.008944 -0.054925 19
F20 F -0.044642 -0.056863 -0.043542 -0.045599 -0.043276 0.000779 -0.039493 -0.011901 0.015491 20
F21 F 0.050680 -0.022373 0.001215 -0.037344 -0.026366 0.015505 -0.039493 -0.072128 -0.017646 21
F22 F -0.044642 -0.004050 -0.009113 -0.002945 0.007767 0.022869 -0.039493 -0.061177 -0.013504 22
T23 T 0.050680 0.060618 0.031053 0.028702 -0.047347 -0.054446 0.071210 0.133599 0.135612 23
F24 F -0.044642 0.035829 -0.022885 -0.030464 -0.018850 -0.006584 -0.002592 -0.025952 -0.054925 24
F25 F 0.050680 -0.012673 -0.040099 -0.015328 0.004636 -0.058127 0.034309 0.019199 -0.034215 25
F26 F -0.044642 -0.077342 -0.026328 -0.089630 -0.096198 0.026550 -0.076395 -0.042572 -0.005220 26
F27 F -0.044642 0.059541 -0.040099 -0.042848 -0.043589 0.011824 -0.039493 -0.015998 0.040343 27
T28 T -0.044642 -0.021295 -0.074528 -0.040096 -0.037639 -0.006584 -0.039493 -0.000609 -0.054925 28
T29 T 0.050680 -0.006206 0.063187 -0.042848 -0.095885 0.052322 -0.076395 0.059424 0.052770 29
... ... ... ... ... ... ... ... ... ... ... ...
T412 T -0.044642 0.085408 0.063187 0.014942 0.013091 0.015505 -0.002592 0.006209 0.085907 412
F413 F -0.044642 -0.000817 -0.026328 0.010815 0.007141 0.048640 -0.039493 -0.035817 0.019633 413
T414 T 0.050680 0.006728 -0.004523 0.109883 0.117056 -0.032356 0.091875 0.054724 0.007207 414
F415 F -0.044642 0.008883 -0.050428 0.025950 0.047224 -0.043401 0.071210 0.014823 0.003064 415
F416 F -0.044642 0.080019 0.098763 -0.002945 0.018101 -0.017629 0.003312 -0.029528 0.036201 416
F417 F -0.044642 0.071397 -0.074528 -0.015328 -0.001314 0.004460 -0.021412 -0.046879 0.003064 417
T418 T -0.044642 -0.024529 -0.026328 0.098876 0.094196 0.070730 -0.002592 -0.021394 0.007207 418
F419 F -0.044642 -0.054707 -0.053871 -0.066239 -0.057367 0.011824 -0.039493 -0.074089 -0.005220 419
T420 T -0.044642 -0.036385 0.000068 0.001183 0.034698 -0.043401 0.034309 -0.033249 0.061054 420
T421 T 0.050680 0.016428 0.021872 0.039710 0.045032 -0.043401 0.071210 0.049769 0.015491 421
F422 F 0.050680 0.077863 0.052858 0.078236 0.064447 0.026550 -0.002592 0.040672 -0.009362 422
T423 T 0.050680 -0.039618 0.028758 0.038334 0.073529 -0.072854 0.108111 0.015567 -0.046641 423
T424 T 0.050680 0.011039 -0.019442 -0.016704 -0.003819 -0.047082 0.034309 0.024053 0.023775 424
F425 F -0.044642 -0.040696 -0.081414 -0.100638 -0.112795 0.022869 -0.076395 -0.020289 -0.050783 425
T426 T 0.050680 -0.034229 0.043677 0.057597 0.068831 -0.032356 0.057557 0.035462 0.085907 426
F427 F 0.050680 0.005650 -0.005671 -0.073119 -0.062691 -0.006584 -0.039493 -0.045421 0.032059 427
T428 T 0.050680 0.088642 0.087287 0.035582 0.021546 -0.024993 0.034309 0.066048 0.131470 428
F429 F -0.044642 -0.033151 -0.022885 0.046589 0.041587 0.056003 -0.024733 -0.025952 -0.038357 429
F430 F -0.044642 -0.056863 -0.050428 0.021822 0.045345 -0.028674 0.034309 -0.009919 -0.017646 430
T431 T 0.050680 -0.030996 0.021872 -0.037344 -0.047034 0.033914 -0.039493 -0.014956 -0.001078 431
T432 T -0.044642 0.055229 -0.005671 0.057597 0.044719 -0.002903 0.023239 0.055684 0.106617 432
F433 F -0.044642 -0.060097 -0.029771 0.046589 0.019980 0.122273 -0.039493 -0.051401 -0.009362 433
T434 T -0.044642 0.001339 0.008101 0.005311 0.010899 0.030232 -0.039493 -0.045421 0.032059 434
F435 F -0.044642 -0.023451 -0.040099 -0.016704 0.004636 -0.017629 -0.002592 -0.038459 -0.038357 435
F436 F -0.044642 -0.074108 -0.050428 -0.024960 -0.047034 0.092820 -0.076395 -0.061177 -0.046641 436
T437 T 0.050680 0.019662 0.059744 -0.005697 -0.002566 -0.028674 -0.002592 0.031193 0.007207 437
F438 F 0.050680 -0.015906 -0.067642 0.049341 0.079165 -0.028674 0.034309 -0.018118 0.044485 438
T439 T 0.050680 -0.015906 0.017282 -0.037344 -0.013840 -0.024993 -0.011080 -0.046879 0.015491 439
F440 F -0.044642 0.039062 0.001215 0.016318 0.015283 -0.028674 0.026560 0.044528 -0.025930 440
F441 F -0.044642 -0.073030 -0.081414 0.083740 0.027809 0.173816 -0.039493 -0.004220 0.003064 441

442 rows × 11 columns


In [62]:
df_X.head(5)


Out[62]:
a b c d e f g h i j k index
0 T 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646 T0 0
1 F -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204 F1 1
2 T 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930 T2 2
3 F -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362 F3 3
4 T -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641 T4 4

In [63]:
df_X=df_X.set_index('a')
df_X.head(10)


Out[63]:
b c d e f g h i j k index
a
T 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646 T0 0
F -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204 F1 1
T 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930 T2 2
F -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362 F3 3
T -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641 T4 4
F -0.044642 -0.040696 -0.019442 -0.068991 -0.079288 0.041277 -0.076395 -0.041180 -0.096346 F5 5
F 0.050680 -0.047163 -0.015999 -0.040096 -0.024800 0.000779 -0.039493 -0.062913 -0.038357 F6 6
T 0.050680 -0.001895 0.066630 0.090620 0.108914 0.022869 0.017703 -0.035817 0.003064 T7 7
T 0.050680 0.061696 -0.040099 -0.013953 0.006202 -0.028674 -0.002592 -0.014956 0.011349 T8 8
F -0.044642 0.039062 -0.033214 -0.012577 -0.034508 -0.024993 -0.002592 0.067736 -0.013504 F9 9

インデックスが入れ替わる。


In [ ]: