In [1]:
from teensyio import *
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

In [2]:
t = TeensyIO(find_teensy())

In [3]:
t.send_cmd('p');
t.setup_cyclic_voltamettry(V_start=2048, V_max=3196, V_min=2048, V_end=2048, N_cycles=2)
t.send_cmd('p');


V_start=2048

V_max=3196

V_min=2048

V_end=2048

N_cycles=2

Read: -CyclicVoltamettry

V_start=2048

V_max=3196

V_min=2048

V_end=2048

N_cycles=2

V_start=2048

V_max=3196

V_min=2048

V_end=2048

N_cycles=2


In [4]:
t.run_and_plot()


0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

In [5]:
t.df['x_scaled'] = (t.df.x - 2048.)/2048. * 3.3

In [6]:
t.df['y_scaled'] = (t.df.y - 2048) / 2048. * 10

In [7]:
t.df


Out[7]:
x y x_scaled y_scaled
0 2048 2050 0.000000 0.009766
1 2049 2049 0.001611 0.004883
2 2050 2050 0.003223 0.009766
3 2051 2050 0.004834 0.009766
4 2052 2050 0.006445 0.009766
5 2053 2046 0.008057 -0.009766
6 2054 2051 0.009668 0.014648
7 2055 2049 0.011279 0.004883
8 2056 2049 0.012891 0.004883
9 2057 2050 0.014502 0.009766
10 2058 2050 0.016113 0.009766
11 2059 2050 0.017725 0.009766
12 2060 2049 0.019336 0.004883
13 2061 2050 0.020947 0.009766
14 2062 2050 0.022559 0.009766
15 2063 2050 0.024170 0.009766
16 2064 2049 0.025781 0.004883
17 2065 2048 0.027393 0.000000
18 2066 2050 0.029004 0.009766
19 2067 2049 0.030615 0.004883
20 2068 2050 0.032227 0.009766
21 2069 2050 0.033838 0.009766
22 2070 2050 0.035449 0.009766
23 2071 2050 0.037061 0.009766
24 2072 2050 0.038672 0.009766
25 2073 2049 0.040283 0.004883
26 2074 2050 0.041895 0.009766
27 2075 2050 0.043506 0.009766
28 2076 2049 0.045117 0.004883
29 2077 2050 0.046729 0.009766
... ... ... ... ...
11697 2265 2050 0.349658 0.009766
11698 2266 2050 0.351270 0.009766
11699 2267 2049 0.352881 0.004883
11700 2268 2049 0.354492 0.004883
11701 2269 2050 0.356104 0.009766
11702 2270 2049 0.357715 0.004883
11703 2271 2050 0.359326 0.009766
11704 2272 2050 0.360937 0.009766
11705 2273 2050 0.362549 0.009766
11706 2274 2050 0.364160 0.009766
11707 2275 2050 0.365771 0.009766
11708 2276 2049 0.367383 0.004883
11709 2277 2049 0.368994 0.004883
11710 2278 2050 0.370605 0.009766
11711 2279 2050 0.372217 0.009766
11712 2280 2048 0.373828 0.000000
11713 2281 2050 0.375439 0.009766
11714 2282 2050 0.377051 0.009766
11715 2283 2050 0.378662 0.009766
11716 2284 2049 0.380273 0.004883
11717 2285 2050 0.381885 0.009766
11718 2286 2050 0.383496 0.009766
11719 2287 2051 0.385107 0.014648
11720 2288 2050 0.386719 0.009766
11721 2289 2050 0.388330 0.009766
11722 2290 2049 0.389941 0.004883
11723 2291 2050 0.391553 0.009766
11724 2292 2050 0.393164 0.009766
11725 2293 2050 0.394775 0.009766
11726 2294 2050 0.396387 0.009766

11727 rows × 4 columns


In [9]:
t.df.to_csv('red_led.csv')

In [18]:
plt.plot(t.df.x-2048, t.df.y-2048)


Out[18]:
[<matplotlib.lines.Line2D at 0x11af95610>]

In [25]:
1/mb[0]*-1


Out[25]:
1.5052704162329249