In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np
In [2]:
from IPython.html.widgets import interact
Write a function char_probs that takes a string and computes the probabilities of each character in the string:
In [10]:
def char_probs(s):
"""Find the probabilities of the unique characters in the string s.
Parameters
----------
s : str
A string of characters.
Returns
-------
probs : dict
A dictionary whose keys are the unique characters in s and whose values
are the probabilities of those characters.
"""
alp={'a':0,'b':0,'c':0,'d':0,'e':0,'f':0,'g':0,'h':0,'i':0,'j':0,'k':0,'l':0,'m':0,'n':0,'o':0,'p':0,'q':0,'r':0,'s':0,'t':0,'u':0,'v':0,'w':0,'x':0,'y':0,'z':0}
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z=0
alph=[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z]
for let in s:
if let=='q':
q+=1
if let=='w':
w+=1
if let=='e':
e+=1
if let=='r':
r+=1
if let=='t':
t+=1
if let=='y':
y+=1
if let=='u':
u+=1
if let=='i':
i+=1
if let=='o':
o+=1
if let=='p':
p+=1
if let=='a':
a+=1
if let=='s':
s+=1
if let=='d':
d+=1
if let=='f':
f+=1
if let=='g':
g+=1
if let=='h':
h+=1
if let=='j':
j+=1
if let=='k':
k+=1
if let=='l':
l+=1
if let=='z':
z+=1
if let=='x':
x+=1
if let=='c':
c+=1
if let=='v':
v+=1
if let=='b':
b+=1
if let=='n':
n+=1
if let=='m':
m+=1
Prob=[]
L=len(s)
for let in alph:
prob=let/L
Prob.append(prob)
return Prob
In [11]:
test1 = char_probs('aaaa')
assert np.allclose(test1['a'], 1.0)
test2 = char_probs('aabb')
assert np.allclose(test2['a'], 0.5)
assert np.allclose(test2['b'], 0.5)
test3 = char_probs('abcd')
assert np.allclose(test3['a'], 0.25)
assert np.allclose(test3['b'], 0.25)
assert np.allclose(test3['c'], 0.25)
assert np.allclose(test3['d'], 0.25)
The entropy is a quantiative measure of the disorder of a probability distribution. It is used extensively in Physics, Statistics, Machine Learning, Computer Science and Information Science. Given a set of probabilities $P_i$, the entropy is defined as:
$$H = - \Sigma_i P_i \log_2(P_i)$$In this expression $\log_2$ is the base 2 log (np.log2), which is commonly used in information science. In Physics the natural log is often used in the definition of entropy.
Write a funtion entropy that computes the entropy of a probability distribution. The probability distribution will be passed as a Python dict: the values in the dict will be the probabilities.
To compute the entropy, you should:
dict to a Numpy array of probabilities.np.log2, etc.) to compute the entropy.for or while loops in your code.
In [ ]:
def entropy(d):
"""Compute the entropy of a dict d whose values are probabilities."""
# YOUR CODE HERE
raise NotImplementedError()
In [ ]:
assert np.allclose(entropy({'a': 0.5, 'b': 0.5}), 1.0)
assert np.allclose(entropy({'a': 1.0}), 0.0)
Use IPython's interact function to create a user interface that allows you to type a string into a text box and see the entropy of the character probabilities of the string.
In [ ]:
# YOUR CODE HERE
raise NotImplementedError()
In [ ]:
assert True # use this for grading the pi digits histogram