In [1]:
from PyGravity import Vector, round_sig

In [2]:
# Vector.array_mistmatch() returns true when the two vectors have differing dimensions
a = Vector([1,2])
b = Vector([1])
print a.array_mismatch(b)
print a.array_mismatch(a)


True
False

In [3]:
#rounding vectors
a = Vector(['1.11111111111','2.22222222222222'])
print '3  -> ', a.round(3)
print '3.1-> ', a.round(3.1)
print '6 -> ',a.round(6)

#Vector.round() returns new vector:
b = a.round(4.1)
print 'a = ', a
print 'b = ', b


3  ->  (1.11,2.22)
3.1->  (1.11,2.22)
6 ->  (1.11111,2.22222)
a =  (1.11111111111,2.22222222222222)
b =  (1.111,2.222)

In [4]:
#Playing with adding, multiplying by scalars and equalities
array = [0]
array2 = ['1.00000000000000000000000000000002']
array3 = ['1.00000000000000000000000000000001']
a = Vector([1.1+32,2e30])
A = Vector(array2)
B = Vector(array3)
Z = Vector(array)

print 'A + B = ', A+B
print 'a * 2 = ', a * 2
print 'a* 2.1 = ', a * 2.1

print A + B == A+A
print A-B == Z
print A == A


A + B =  (2.000000000000000000000000000)
a * 2 =  (66.2,4E+30)
a* 2.1 =  (69.51000000000000293987056921,4.200000000000000177635683940E+30)
True
False
True

In [5]:
#Vector.magnitude returns magnitude of vector
a = Vector(['3','4'])
print a, a.magnitude()

b = Vector(['2','4','4'])
print b, b.magnitude()

c = Vector(['2','2','2','2'])
print c, c.magnitude()


(3,4) 5
(2,4,4) 6
(2,2,2,2) 4

In [6]:
#multiplying  by more scalars
T = Vector(['1.1111111111111111111111111111111111111222'])
M = T * 1.111111122
print M
print M.round(2.12)


(1.234567913333333402350591415)
(1.2)

In [7]:
a = Vector(['1.12','2.34','3.45'])
ans_a = Vector(['0.259467','0542101','0.799252'])
print a.unit()


(0.2594671955118020195596948633,0.5421011049085863622943624822,0.7992516290318901495365600699)

In [ ]: