In [1]:
import numpy
print numpy.__version__
import matplotlib.pyplot as plt
%matplotlib inline
x = [1, 2, 3, 4, 5, 6]
np_arr = numpy.array(x)
# output
x
Out[1]:
In [2]:
np_arr
Out[2]:
In [3]:
np_arr.shape
Out[3]:
In [4]:
x == np_arr
Out[4]:
In [5]:
x = [ [1,2], [3,4], [5,6]]
np_arr = numpy.array(x)
np_arr.shape
Out[5]:
In [6]:
array_slice = np_arr[:,1]
array_slice
Out[6]:
In [7]:
array_slice[2] = 7
np_arr * 3
np_arr.T.dot(np_arr)
Out[7]:
In [8]:
numpy.average(np_arr) + 1
Out[8]:
In [9]:
numpy.average(np_arr[:,1])
Out[9]:
In [10]:
np_arr
numpy.cov(np_arr)
Out[10]:
In [2]:
x = [ 0, 1, 2, 3, 4, 5, 6 ]
y = [ 0, 2, 4, 8, 16, 32, 64 ]
plt.plot(x, y)
Out[2]:
In [12]:
plt.plot(x, y, 'g--', label='my line')
plt.legend()
Out[12]:
In [13]:
plt.plot(x, y, 'b*')
plt.axis(xmin=-10, xmax=8, ymin=-10)
Out[13]:
In [14]:
x = numpy.linspace(0, 25, 100)
y = x ** 2
In [15]:
plt.plot(x,y, 'r*')
Out[15]:
In [16]:
import sklearn.datasets as datasets
plt.jet()
X, Y = datasets.make_blobs(centers=4, cluster_std=0.5, random_state=0)
plt.scatter(X[:,0], X[:,1], c=Y)
Out[16]:
In [ ]: