In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import re
import pandas as pd

In [2]:
df = pd.read_csv('techrpt083.csv', skiprows=15)

In [3]:
df.shape


Out[3]:
(35046, 20)

In [4]:
df2 = df[df['Site'].str.contains("HALIFAX")]
df2


Out[4]:
Site PSMSL ID Latitude Longitude Scenario Background RSL rate (mm/yr) RSL in 2000 (cm) RSL in 2010 (cm) RSL in 2020 (cm) RSL in 2030 (cm) RSL in 2040 (cm) RSL in 2050 (cm) RSL in 2060 (cm) RSL in 2070 (cm) RSL in 2080 (cm) RSL in 2090 (cm) RSL in 2100 (cm) RSL in 2120 (cm) RSL in 2150 (cm) RSL in 2200 (cm)
54 HALIFAX 96 44.67 -63.58 0.3 - MED 1.32 0 5 11 16 20 27 32 36 40 44 47 50.0 58.0 66.0
55 HALIFAX 96 44.67 -63.58 0.3 - LOW 1.18 0 2 6 10 13 15 17 18 19 21 22 22.0 26.0 19.0
56 HALIFAX 96 44.67 -63.58 0.3 - HIGH 1.46 0 7 14 21 29 36 45 51 57 62 66 74.0 88.0 110.0
57 HALIFAX 96 44.67 -63.58 0.5 - MED 1.32 0 6 13 19 25 33 39 45 51 56 60 70.0 85.0 105.0
58 HALIFAX 96 44.67 -63.58 0.5 - LOW 1.18 0 4 8 14 18 23 28 33 37 42 45 51.0 60.0 65.0
59 HALIFAX 96 44.67 -63.58 0.5 - HIGH 1.46 0 7 16 24 32 40 49 55 62 68 74 85.0 106.0 142.0
60 HALIFAX 96 44.67 -63.58 1.0 - MED 1.32 0 8 18 28 39 52 66 81 97 114 130 149.0 199.0 285.0
61 HALIFAX 96 44.67 -63.58 1.0 - LOW 1.18 0 6 12 21 30 40 51 63 76 90 104 117.0 159.0 223.0
62 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 0 10 22 33 47 61 78 96 114 133 152 178.0 236.0 356.0
63 HALIFAX 96 44.67 -63.58 1.5 - MED 1.32 0 11 24 37 53 72 93 115 141 168 195 249.0 351.0 565.0
64 HALIFAX 96 44.67 -63.58 1.5 - LOW 1.18 0 6 14 24 37 51 66 84 102 126 149 187.0 260.0 400.0
65 HALIFAX 96 44.67 -63.58 1.5 - HIGH 1.46 0 13 27 42 62 82 107 134 163 193 226 299.0 418.0 677.0
66 HALIFAX 96 44.67 -63.58 2.0 - MED 1.32 0 14 29 46 70 97 128 162 197 236 278 377.0 550.0 913.0
67 HALIFAX 96 44.67 -63.58 2.0 - LOW 1.18 0 13 26 43 62 84 107 133 165 203 243 331.0 489.0 808.0
68 HALIFAX 96 44.67 -63.58 2.0 - HIGH 1.46 0 15 31 51 75 103 135 170 210 255 299 412.0 589.0 972.0
69 HALIFAX 96 44.67 -63.58 2.5 - MED 1.32 0 15 30 50 77 110 149 191 236 289 343 471.0 707.0 1154.0
70 HALIFAX 96 44.67 -63.58 2.5 - LOW 1.18 0 6 14 28 46 70 98 132 171 217 267 376.0 578.0 1031.0
71 HALIFAX 96 44.67 -63.58 2.5 - HIGH 1.46 0 16 34 57 86 120 157 202 252 304 365 537.0 780.0 1267.0

In [5]:
df3 = df2[df2['Scenario'].str.contains("1.0 - HIGH")]
df3


Out[5]:
Site PSMSL ID Latitude Longitude Scenario Background RSL rate (mm/yr) RSL in 2000 (cm) RSL in 2010 (cm) RSL in 2020 (cm) RSL in 2030 (cm) RSL in 2040 (cm) RSL in 2050 (cm) RSL in 2060 (cm) RSL in 2070 (cm) RSL in 2080 (cm) RSL in 2090 (cm) RSL in 2100 (cm) RSL in 2120 (cm) RSL in 2150 (cm) RSL in 2200 (cm)
62 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 0 10 22 33 47 61 78 96 114 133 152 178.0 236.0 356.0

In [ ]:


In [6]:
df3.columns.values[0:6]


Out[6]:
array(['Site', 'PSMSL ID', 'Latitude', 'Longitude', 'Scenario',
       'Background RSL rate (mm/yr)'], dtype=object)

In [7]:
df4 = pd.melt(df3, id_vars=df3.columns.values[0:6], 
                  var_name="Date", value_name="Value")
df4


Out[7]:
Site PSMSL ID Latitude Longitude Scenario Background RSL rate (mm/yr) Date Value
0 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2000 (cm) 0.0
1 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2010 (cm) 10.0
2 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2020 (cm) 22.0
3 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2030 (cm) 33.0
4 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2040 (cm) 47.0
5 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2050 (cm) 61.0
6 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2060 (cm) 78.0
7 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2070 (cm) 96.0
8 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2080 (cm) 114.0
9 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2090 (cm) 133.0
10 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2100 (cm) 152.0
11 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2120 (cm) 178.0
12 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2150 (cm) 236.0
13 HALIFAX 96 44.67 -63.58 1.0 - HIGH 1.46 RSL in 2200 (cm) 356.0

In [8]:
df5 = df4.copy(deep=True)
for scenario in df2['Scenario'].values:
    df3 = df2[df2['Scenario'].str.contains(scenario)]
    var = scenario.replace(' ','')
    df4 = pd.melt(df3, id_vars=df3.columns.values[0:6], 
                  var_name="Date", value_name=var)
    df5[var] = df4[var]

In [9]:
df5['Date'] = [int(re.findall(r'\d+', v)[0]) for v in df5['Date'].values]

In [10]:
df5.rename(columns = {'Site':'id'}, inplace = True)

In [11]:
def df_station(df, station):
    df2 = df[df['Site'].str.contains(station)]
    df3 = df2[df2['Scenario'].str.contains("1.0 - HIGH")]
    df4 = pd.melt(df3, id_vars=df3.columns.values[0:6], 
                  var_name="Date", value_name="Value")
    df5 = df4.copy(deep=True)
    for scenario in df2['Scenario'].values:
        df3 = df2[df2['Scenario'].str.contains(scenario)]
        var = scenario.replace(' ','')
        df4 = pd.melt(df3, id_vars=df3.columns.values[0:6], 
                      var_name="Date", value_name=var)
        df5[var] = df4[var]
    return df5

In [12]:
df5 = df_station(df, 'HALIFAX')

In [13]:
df2 = df[~df['Site'].str.contains('grid_')]
df3 = df2[~df2['Site'].str.contains('GMSL')]
df3


Out[13]:
Site PSMSL ID Latitude Longitude Scenario Background RSL rate (mm/yr) RSL in 2000 (cm) RSL in 2010 (cm) RSL in 2020 (cm) RSL in 2030 (cm) RSL in 2040 (cm) RSL in 2050 (cm) RSL in 2060 (cm) RSL in 2070 (cm) RSL in 2080 (cm) RSL in 2090 (cm) RSL in 2100 (cm) RSL in 2120 (cm) RSL in 2150 (cm) RSL in 2200 (cm)
18 SAN FRANCISCO 10 37.81 -122.47 0.3 - MED -0.07 0 3 6 10 13 17 21 25 28 31 34 40.0 47.0 53.0
19 SAN FRANCISCO 10 37.81 -122.47 0.3 - LOW -0.16 0 1 3 6 8 10 13 15 17 19 19 23.0 25.0 17.0
20 SAN FRANCISCO 10 37.81 -122.47 0.3 - HIGH 0.02 0 4 8 13 18 23 28 33 38 43 49 55.0 65.0 83.0
21 SAN FRANCISCO 10 37.81 -122.47 0.5 - MED -0.07 0 3 8 12 17 22 28 33 38 43 48 56.0 70.0 92.0
22 SAN FRANCISCO 10 37.81 -122.47 0.5 - LOW -0.16 0 2 5 9 13 17 21 26 31 36 38 46.0 52.0 57.0
23 SAN FRANCISCO 10 37.81 -122.47 0.5 - HIGH 0.02 0 4 9 15 20 26 32 38 43 49 55 68.0 87.0 123.0
24 SAN FRANCISCO 10 37.81 -122.47 1.0 - MED -0.07 0 5 10 17 25 36 47 59 73 87 104 123.0 176.0 278.0
25 SAN FRANCISCO 10 37.81 -122.47 1.0 - LOW -0.16 0 3 8 14 20 29 40 52 64 78 91 114.0 158.0 242.0
26 SAN FRANCISCO 10 37.81 -122.47 1.0 - HIGH 0.02 0 6 12 19 28 40 52 66 81 97 117 141.0 202.0 325.0
27 SAN FRANCISCO 10 37.81 -122.47 1.5 - MED -0.07 0 7 13 22 34 51 69 90 114 141 174 210.0 318.0 541.0
28 SAN FRANCISCO 10 37.81 -122.47 1.5 - LOW -0.16 0 4 9 17 27 41 58 76 98 122 147 191.0 286.0 476.0
29 SAN FRANCISCO 10 37.81 -122.47 1.5 - HIGH 0.02 0 8 15 25 38 57 77 100 127 155 191 247.0 370.0 630.0
30 SAN FRANCISCO 10 37.81 -122.47 2.0 - MED -0.07 0 8 16 28 46 70 97 127 163 204 253 324.0 500.0 872.0
31 SAN FRANCISCO 10 37.81 -122.47 2.0 - LOW -0.16 0 7 14 25 41 63 88 117 151 188 232 299.0 459.0 804.0
32 SAN FRANCISCO 10 37.81 -122.47 2.0 - HIGH 0.02 0 9 18 32 49 73 101 133 170 211 261 361.0 551.0 933.0
33 SAN FRANCISCO 10 37.81 -122.47 2.5 - MED -0.07 0 8 18 32 54 83 118 158 202 252 311 433.0 669.0 1130.0
34 SAN FRANCISCO 10 37.81 -122.47 2.5 - LOW -0.16 0 3 10 21 37 60 90 124 163 207 257 368.0 573.0 1014.0
35 SAN FRANCISCO 10 37.81 -122.47 2.5 - HIGH 0.02 0 9 20 36 57 88 125 166 215 268 334 471.0 725.0 1207.0
36 NEW YORK 12 40.70 -74.01 0.3 - MED 1.29 0 5 11 15 20 25 31 36 39 44 46 51.0 58.0 69.0
37 NEW YORK 12 40.70 -74.01 0.3 - LOW 1.20 0 2 6 10 13 15 18 19 21 21 22 27.0 28.0 26.0
38 NEW YORK 12 40.70 -74.01 0.3 - HIGH 1.38 0 7 14 21 28 36 42 49 54 60 65 75.0 88.0 110.0
39 NEW YORK 12 40.70 -74.01 0.5 - MED 1.29 0 6 13 19 25 31 39 45 50 56 61 70.0 85.0 110.0
40 NEW YORK 12 40.70 -74.01 0.5 - LOW 1.20 0 4 8 13 18 24 29 33 39 43 47 54.0 63.0 70.0
41 NEW YORK 12 40.70 -74.01 0.5 - HIGH 1.38 0 7 16 23 31 39 47 54 60 66 72 85.0 106.0 145.0
42 NEW YORK 12 40.70 -74.01 1.0 - MED 1.29 0 9 19 29 39 51 65 80 96 114 130 148.0 202.0 295.0
43 NEW YORK 12 40.70 -74.01 1.0 - LOW 1.20 0 6 12 21 29 40 52 64 78 92 106 122.0 167.0 240.0
44 NEW YORK 12 40.70 -74.01 1.0 - HIGH 1.38 0 11 23 34 47 60 76 93 111 130 150 176.0 238.0 359.0
45 NEW YORK 12 40.70 -74.01 1.5 - MED 1.29 0 12 25 39 53 71 92 114 139 167 197 247.0 353.0 567.0
46 NEW YORK 12 40.70 -74.01 1.5 - LOW 1.20 0 7 14 24 36 51 68 87 108 130 154 195.0 281.0 442.0
47 NEW YORK 12 40.70 -74.01 1.5 - HIGH 1.38 0 15 31 45 61 80 104 130 159 191 225 297.0 420.0 673.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
4272 CAPE HATTERAS 2294 35.22 -75.64 1.0 - MED 1.68 0 9 17 27 38 50 64 79 94 112 130 149.0 204.0 304.0
4273 CAPE HATTERAS 2294 35.22 -75.64 1.0 - LOW 1.35 0 5 13 20 29 40 52 64 78 92 106 128.0 173.0 251.0
4274 CAPE HATTERAS 2294 35.22 -75.64 1.0 - HIGH 2.01 0 10 21 33 45 59 74 92 109 128 149 174.0 240.0 369.0
4275 CAPE HATTERAS 2294 35.22 -75.64 1.5 - MED 1.68 0 11 22 36 51 68 89 114 139 168 203 242.0 354.0 577.0
4276 CAPE HATTERAS 2294 35.22 -75.64 1.5 - LOW 1.35 0 6 14 24 36 52 68 87 110 133 160 204.0 295.0 460.0
4277 CAPE HATTERAS 2294 35.22 -75.64 1.5 - HIGH 2.01 0 13 26 41 58 78 101 128 156 189 224 286.0 415.0 679.0
4278 CAPE HATTERAS 2294 35.22 -75.64 2.0 - MED 1.68 0 13 26 45 65 89 121 154 189 232 282 367.0 554.0 928.0
4279 CAPE HATTERAS 2294 35.22 -75.64 2.0 - LOW 1.35 0 11 23 39 58 81 107 135 170 209 254 333.0 497.0 827.0
4280 CAPE HATTERAS 2294 35.22 -75.64 2.0 - HIGH 2.01 0 14 29 48 69 95 127 162 203 246 299 395.0 589.0 980.0
4281 CAPE HATTERAS 2294 35.22 -75.64 2.5 - MED 1.68 0 14 28 49 73 104 142 184 228 282 345 461.0 708.0 1162.0
4282 CAPE HATTERAS 2294 35.22 -75.64 2.5 - LOW 1.35 0 5 14 27 45 69 98 132 173 218 268 380.0 591.0 1042.0
4283 CAPE HATTERAS 2294 35.22 -75.64 2.5 - HIGH 2.01 0 15 30 52 77 110 150 194 243 298 366 518.0 772.0 1259.0
4284 BEAUFORT 2295 34.72 -76.67 0.3 - MED 1.28 0 4 10 15 20 24 30 35 39 43 46 52.0 61.0 74.0
4285 BEAUFORT 2295 34.72 -76.67 0.3 - LOW 1.02 0 2 6 9 13 15 18 19 21 23 24 30.0 30.0 32.0
4286 BEAUFORT 2295 34.72 -76.67 0.3 - HIGH 1.54 0 7 13 20 27 34 41 47 52 58 64 73.0 88.0 111.0
4287 BEAUFORT 2295 34.72 -76.67 0.5 - MED 1.28 0 5 12 18 24 30 37 43 49 55 60 70.0 87.0 114.0
4288 BEAUFORT 2295 34.72 -76.67 0.5 - LOW 1.02 0 4 8 13 18 23 28 33 38 42 46 54.0 63.0 73.0
4289 BEAUFORT 2295 34.72 -76.67 0.5 - HIGH 1.54 0 8 15 23 30 38 45 52 58 65 72 85.0 108.0 151.0
4290 BEAUFORT 2295 34.72 -76.67 1.0 - MED 1.28 0 8 17 26 36 47 61 76 91 108 126 143.0 197.0 293.0
4291 BEAUFORT 2295 34.72 -76.67 1.0 - LOW 1.02 0 5 12 19 28 38 49 62 74 89 103 123.0 167.0 243.0
4292 BEAUFORT 2295 34.72 -76.67 1.0 - HIGH 1.54 0 10 19 31 42 56 71 88 105 124 144 167.0 232.0 357.0
4293 BEAUFORT 2295 34.72 -76.67 1.5 - MED 1.28 0 10 21 35 49 66 88 111 137 166 199 235.0 346.0 561.0
4294 BEAUFORT 2295 34.72 -76.67 1.5 - LOW 1.02 0 6 13 22 34 49 66 84 106 129 155 198.0 288.0 451.0
4295 BEAUFORT 2295 34.72 -76.67 1.5 - HIGH 1.54 0 12 24 39 55 75 97 124 152 185 220 278.0 406.0 666.0
4296 BEAUFORT 2295 34.72 -76.67 2.0 - MED 1.28 0 12 25 42 62 86 118 150 188 230 279 360.0 545.0 915.0
4297 BEAUFORT 2295 34.72 -76.67 2.0 - LOW 1.02 0 11 22 39 56 79 105 135 169 207 251 327.0 490.0 809.0
4298 BEAUFORT 2295 34.72 -76.67 2.0 - HIGH 1.54 0 14 27 45 66 93 124 159 200 243 294 387.0 580.0 968.0
4299 BEAUFORT 2295 34.72 -76.67 2.5 - MED 1.28 0 12 26 47 70 102 140 181 225 280 339 455.0 698.0 1151.0
4300 BEAUFORT 2295 34.72 -76.67 2.5 - LOW 1.02 0 5 13 26 44 67 96 129 169 214 263 373.0 582.0 1029.0
4301 BEAUFORT 2295 34.72 -76.67 2.5 - HIGH 1.54 0 15 29 49 74 107 146 191 241 296 360 507.0 759.0 1244.0

4284 rows × 20 columns


In [14]:
df3['Site'].unique()


Out[14]:
array(['SAN FRANCISCO', 'NEW YORK', 'HALIFAX', 'FERNANDINA BEACH',
       'TROIS-RIVIERES', 'SEATTLE', 'PHILADELPHIA', 'PORT-SAINT-FRANCOIS',
       'POINTE-AU-PERE', 'BATISCAN', 'BALTIMORE', 'HONOLULU', 'SAN DIEGO',
       'GALVESTON II', 'TOFINO', 'VICTORIA', 'PRINCE RUPERT', 'CRISTOBAL',
       'QUEBEC', 'VANCOUVER', 'HARRINGTON HBR', 'ATLANTIC CITY',
       'PORTLAND ', 'KEY WEST', 'NEUVILLE', 'POINT ATKINSON', 'SAINT JOHN',
       'DESCHAILLONS', 'LEWES', 'KETCHIKAN', 'CHARLESTON I', 'BOSTON',
       'LOS ANGELES', 'PENSACOLA', 'LA JOLLA', 'ASTORIA', 'SEWARD',
       'DAYTONA BEACH', 'SEAVEY ISLAND', 'SEWELLS POINT', 'HILO',
       'ANNAPOLIS', 'MAYPORT', 'EASTPORT', 'NEWPORT', 'WASHINGTON DC',
       'WILLETS POINT', 'MIAMI BEACH', 'SANDY HOOK', 'WOODS HOLE',
       'ST. GEORGES', 'SANTA MONICA', 'CRESCENT CITY', 'FRIDAY HARBOR',
       'NEAH BAY', 'GRONDINES', 'PORT AUX BASQUES', "ST. JOHN'S",
       'FORT PULASKI', 'WILMINGTON', 'PORTSMOUTH', 'JUNEAU',
       "SOLOMON'S ISLAND", 'GUANTANAMO BAY', 'SITKA', 'CHARLOTTETOWN',
       'CEDAR KEY II', 'NEW LONDON', 'PROVIDENCE', 'ALAMEDA',
       'EUGENE ISLAND', 'YAKUTAT', 'CHURCHILL', 'RICHMOND',
       'ADAK  SWEEPER COVE', 'MASSACRE BAY', 'SKAGWAY', 'PORT ISABEL',
       'PORT SAN LUIS', 'KWAJALEIN', 'MONTAUK', 'ST. PETERSBURG',
       'KAHULUI HARBOR', 'MIDWAY ISLAND', 'BAR HARBOR', 'GRAND ISLE',
       'PORT ALBERNI', 'CHUUK', 'ROCKPORT', 'PAGO PAGO', 'APRA HARBOUR',
       'PUERTO LIMON', 'ALERT BAY', 'PUERTO CORTES', 'GIBARA', 'CORDOVA',
       'KODIAK ISLAND', 'CARTAGENA', 'KANTON ISLAND', 'WAKE ISLAND',
       'GLOUCESTER POINT', 'JOHNSTON ISLAND', 'KIPTOPEKE BEACH',
       'ENEWETOK', 'ACAPULCO', 'FULFORD HARBOUR', 'SALINA CRUZ',
       'PROGRESO', 'COATZACOALCOS', 'GUAYMAS', 'LA PAZ', 'MAZATLAN',
       'FREEPORT', 'MANZANILLO', 'NAWILIWILI BAY', 'UNALASKA',
       'MAGUEYES ISLAND', 'NEWPORT BAY', 'ALVARADO', 'SANDWICH MARINA',
       'BUZZARDS BAY', 'REEDY POINT', 'ENSENADA', 'CIUDAD DEL CARMEN',
       'MOKUOLOE ISLAND', 'GALVESTON I', 'QUEEN CHARLOTTE CITY',
       'PORT RENFREW', 'PORT JEFFERSON', 'NOUMEA-CHALEIX', 'NEW ROCHELLE',
       'TUXPAN', 'PADRE ISLAND', 'PORTNEUF', 'BELLA BELLA', 'ST-FRANCOIS',
       'SAN JUAN', 'CHAMPLAIN', 'RINCON ISLAND', 'CIUDAD MADERO',
       'PORT MANSFIELD', 'ANCHORAGE', 'BRIDGEPORT', 'SELDOVIA',
       'PORT HARDY', 'SANTO TOMAS DE CASTILLA', 'FORT MYERS', 'NAPLES',
       'NANTUCKET ISLAND', 'PICTOU', 'PATRICIA BAY', 'CAPE MAY',
       'DAUPHIN ISLAND', 'YARMOUTH', 'APALACHICOLA', 'SOUTH BEACH',
       'STE-ANNE-DES-MONTS', 'RIVIERE-AU-RENARD', 'MAJURO-B',
       'BAIE COMEAU', 'TADOUSSAC', 'BAMFIELD', 'ST-JOSEPH-DE-LA-RIVE',
       'NEW  WESTMINSTER', 'MALAKAL-B', 'RIKITEA', 'STEVESTON',
       'CHARLESTON II', 'EASTER ISLAND-E', 'CAMBRIDGE II',
       'CABO DE SAN ANTONIO', 'NORTH SYDNEY', 'ARGENTIA', 'SEPT-ILES',
       'CAMPBELL RIVER', 'PORT TOWNSEND', 'SUVA-A', 'KANTON ISLAND-B',
       'LOWER ESCUMINAC', 'NIKISKI', 'MONTEREY', 'VALDEZ', 'TOKE POINT',
       'CABO SAN LUCAS', 'POHNPEI-B', 'CHRISTMAS ISLAND II',
       'FRENCH FRIGATE SHOALS', 'HONIARA II', 'PORT-ALFRED',
       'CHARLOTTE AMALIE', 'POINT REYES', 'PAPEETE-B', 'NORTH SOUND',
       'SOUTH SOUND', 'SPRINGMAID PIER', 'LIME TREE BAY', 'PENRHYN',
       'FUNAFUTI', 'KAPINGAMARANGI', 'SAIPAN', 'CUTLER II', 'RIMOUSKI',
       'CHERRY POINT', 'SAND POINT', 'CHESAPEAKE BAY BR. TUN.',
       'DUCK PIER OUTSIDE', 'BERGEN POINT', 'CLEARWATER BEACH', 'N. SPIT',
       'PORT ORFORD', 'PANAMA CITY', 'VACA KEY', 'BECANCOUR',
       'WINTER HARBOUR', 'NOME', 'BETIO', 'LAUTOKA', 'SABINE PASS NORTH',
       'MAJURO-C', 'FUNAFUTI B', 'APIA B', 'PORT VILA B', "NUKU'ALOFA B",
       'RAROTONGA B', 'NAURU-B', 'PRUDHOE BAY', 'VIRGINIA KEY',
       'HONIARA-B', 'CORPUS CHRISTI', 'CABO CRUZ', 'CASILDA II',
       'TRIDENT PIER', 'ARENA COVE', 'SANTA BARBARA', 'PORT ANGELES',
       'KAWAIHAE', 'CAPE HATTERAS', 'BEAUFORT'], dtype=object)

In [15]:
dfs = [df_station(df3,station) for station in df3['Site'].unique()]

In [16]:
type(dfs)


Out[16]:
list

In [17]:
df6 = pd.concat(dfs)

In [18]:
del df6['Value']
del df6['Scenario']
del df6['PSMSL ID']

In [20]:
df6['Date'] = [int(re.findall(r'\d+', v)[0]) for v in df6['Date'].values]
df6.rename(columns = {'Site':'id'}, inplace = True)

In [21]:
df6.to_csv('major_stations.csv', index=False)

In [19]:
df6


Out[19]:
Site Latitude Longitude Background RSL rate (mm/yr) Date 0.3-MED 0.3-LOW 0.3-HIGH 0.5-MED 0.5-LOW ... 1.0-HIGH 1.5-MED 1.5-LOW 1.5-HIGH 2.0-MED 2.0-LOW 2.0-HIGH 2.5-MED 2.5-LOW 2.5-HIGH
0 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2000 (cm) 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2010 (cm) 3.0 1.0 4.0 3.0 2.0 ... 6.0 7.0 4.0 8.0 8.0 7.0 9.0 8.0 3.0 9.0
2 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2020 (cm) 6.0 3.0 8.0 8.0 5.0 ... 12.0 13.0 9.0 15.0 16.0 14.0 18.0 18.0 10.0 20.0
3 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2030 (cm) 10.0 6.0 13.0 12.0 9.0 ... 19.0 22.0 17.0 25.0 28.0 25.0 32.0 32.0 21.0 36.0
4 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2040 (cm) 13.0 8.0 18.0 17.0 13.0 ... 28.0 34.0 27.0 38.0 46.0 41.0 49.0 54.0 37.0 57.0
5 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2050 (cm) 17.0 10.0 23.0 22.0 17.0 ... 40.0 51.0 41.0 57.0 70.0 63.0 73.0 83.0 60.0 88.0
6 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2060 (cm) 21.0 13.0 28.0 28.0 21.0 ... 52.0 69.0 58.0 77.0 97.0 88.0 101.0 118.0 90.0 125.0
7 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2070 (cm) 25.0 15.0 33.0 33.0 26.0 ... 66.0 90.0 76.0 100.0 127.0 117.0 133.0 158.0 124.0 166.0
8 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2080 (cm) 28.0 17.0 38.0 38.0 31.0 ... 81.0 114.0 98.0 127.0 163.0 151.0 170.0 202.0 163.0 215.0
9 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2090 (cm) 31.0 19.0 43.0 43.0 36.0 ... 97.0 141.0 122.0 155.0 204.0 188.0 211.0 252.0 207.0 268.0
10 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2100 (cm) 34.0 19.0 49.0 48.0 38.0 ... 117.0 174.0 147.0 191.0 253.0 232.0 261.0 311.0 257.0 334.0
11 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2120 (cm) 40.0 23.0 55.0 56.0 46.0 ... 141.0 210.0 191.0 247.0 324.0 299.0 361.0 433.0 368.0 471.0
12 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2150 (cm) 47.0 25.0 65.0 70.0 52.0 ... 202.0 318.0 286.0 370.0 500.0 459.0 551.0 669.0 573.0 725.0
13 SAN FRANCISCO 37.81 -122.47 0.02 RSL in 2200 (cm) 53.0 17.0 83.0 92.0 57.0 ... 325.0 541.0 476.0 630.0 872.0 804.0 933.0 1130.0 1014.0 1207.0
0 NEW YORK 40.70 -74.01 1.38 RSL in 2000 (cm) 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 NEW YORK 40.70 -74.01 1.38 RSL in 2010 (cm) 5.0 2.0 7.0 6.0 4.0 ... 11.0 12.0 7.0 15.0 14.0 13.0 17.0 14.0 6.0 15.0
2 NEW YORK 40.70 -74.01 1.38 RSL in 2020 (cm) 11.0 6.0 14.0 13.0 8.0 ... 23.0 25.0 14.0 31.0 31.0 25.0 35.0 29.0 14.0 33.0
3 NEW YORK 40.70 -74.01 1.38 RSL in 2030 (cm) 15.0 10.0 21.0 19.0 13.0 ... 34.0 39.0 24.0 45.0 48.0 43.0 53.0 50.0 28.0 55.0
4 NEW YORK 40.70 -74.01 1.38 RSL in 2040 (cm) 20.0 13.0 28.0 25.0 18.0 ... 47.0 53.0 36.0 61.0 67.0 63.0 75.0 76.0 45.0 82.0
5 NEW YORK 40.70 -74.01 1.38 RSL in 2050 (cm) 25.0 15.0 36.0 31.0 24.0 ... 60.0 71.0 51.0 80.0 92.0 85.0 100.0 105.0 68.0 114.0
6 NEW YORK 40.70 -74.01 1.38 RSL in 2060 (cm) 31.0 18.0 42.0 39.0 29.0 ... 76.0 92.0 68.0 104.0 124.0 107.0 130.0 144.0 97.0 150.0
7 NEW YORK 40.70 -74.01 1.38 RSL in 2070 (cm) 36.0 19.0 49.0 45.0 33.0 ... 93.0 114.0 87.0 130.0 154.0 134.0 166.0 185.0 130.0 194.0
8 NEW YORK 40.70 -74.01 1.38 RSL in 2080 (cm) 39.0 21.0 54.0 50.0 39.0 ... 111.0 139.0 108.0 159.0 189.0 168.0 206.0 230.0 170.0 241.0
9 NEW YORK 40.70 -74.01 1.38 RSL in 2090 (cm) 44.0 21.0 60.0 56.0 43.0 ... 130.0 167.0 130.0 191.0 234.0 205.0 250.0 286.0 214.0 296.0
10 NEW YORK 40.70 -74.01 1.38 RSL in 2100 (cm) 46.0 22.0 65.0 61.0 47.0 ... 150.0 197.0 154.0 225.0 279.0 248.0 298.0 342.0 262.0 357.0
11 NEW YORK 40.70 -74.01 1.38 RSL in 2120 (cm) 51.0 27.0 75.0 70.0 54.0 ... 176.0 247.0 195.0 297.0 368.0 334.0 405.0 459.0 373.0 530.0
12 NEW YORK 40.70 -74.01 1.38 RSL in 2150 (cm) 58.0 28.0 88.0 85.0 63.0 ... 238.0 353.0 281.0 420.0 561.0 493.0 586.0 695.0 574.0 772.0
13 NEW YORK 40.70 -74.01 1.38 RSL in 2200 (cm) 69.0 26.0 110.0 110.0 70.0 ... 359.0 567.0 442.0 673.0 926.0 826.0 958.0 1139.0 1011.0 1237.0
0 HALIFAX 44.67 -63.58 1.46 RSL in 2000 (cm) 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 HALIFAX 44.67 -63.58 1.46 RSL in 2010 (cm) 5.0 2.0 7.0 6.0 4.0 ... 10.0 11.0 6.0 13.0 14.0 13.0 15.0 15.0 6.0 16.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
12 KAWAIHAE 20.04 -155.83 1.05 RSL in 2150 (cm) 67.0 40.0 88.0 92.0 70.0 ... 242.0 376.0 351.0 409.0 556.0 520.0 585.0 709.0 650.0 762.0
13 KAWAIHAE 20.04 -155.83 1.05 RSL in 2200 (cm) 75.0 27.0 114.0 119.0 77.0 ... 387.0 630.0 580.0 699.0 949.0 894.0 1011.0 1225.0 1147.0 1334.0
0 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2000 (cm) 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2010 (cm) 5.0 2.0 7.0 6.0 4.0 ... 10.0 11.0 6.0 13.0 13.0 11.0 14.0 14.0 5.0 15.0
2 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2020 (cm) 10.0 7.0 15.0 12.0 9.0 ... 21.0 22.0 14.0 26.0 26.0 23.0 29.0 28.0 14.0 30.0
3 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2030 (cm) 16.0 10.0 22.0 19.0 14.0 ... 33.0 36.0 24.0 41.0 45.0 39.0 48.0 49.0 27.0 52.0
4 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2040 (cm) 22.0 13.0 29.0 26.0 19.0 ... 45.0 51.0 36.0 58.0 65.0 58.0 69.0 73.0 45.0 77.0
5 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2050 (cm) 26.0 17.0 37.0 32.0 25.0 ... 59.0 68.0 52.0 78.0 89.0 81.0 95.0 104.0 69.0 110.0
6 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2060 (cm) 32.0 19.0 44.0 39.0 30.0 ... 74.0 89.0 68.0 101.0 121.0 107.0 127.0 142.0 98.0 150.0
7 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2070 (cm) 38.0 21.0 51.0 46.0 35.0 ... 92.0 114.0 87.0 128.0 154.0 135.0 162.0 184.0 132.0 194.0
8 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2080 (cm) 42.0 24.0 57.0 52.0 41.0 ... 109.0 139.0 110.0 156.0 189.0 170.0 203.0 228.0 173.0 243.0
9 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2090 (cm) 46.0 25.0 63.0 58.0 46.0 ... 128.0 168.0 133.0 189.0 232.0 209.0 246.0 282.0 218.0 298.0
10 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2100 (cm) 50.0 26.0 69.0 64.0 50.0 ... 149.0 203.0 160.0 224.0 282.0 254.0 299.0 345.0 268.0 366.0
11 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2120 (cm) 57.0 33.0 79.0 75.0 58.0 ... 174.0 242.0 204.0 286.0 367.0 333.0 395.0 461.0 380.0 518.0
12 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2150 (cm) 67.0 35.0 96.0 93.0 68.0 ... 240.0 354.0 295.0 415.0 554.0 497.0 589.0 708.0 591.0 772.0
13 CAPE HATTERAS 35.22 -75.64 2.01 RSL in 2200 (cm) 81.0 39.0 119.0 122.0 79.0 ... 369.0 577.0 460.0 679.0 928.0 827.0 980.0 1162.0 1042.0 1259.0
0 BEAUFORT 34.72 -76.67 1.54 RSL in 2000 (cm) 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 BEAUFORT 34.72 -76.67 1.54 RSL in 2010 (cm) 4.0 2.0 7.0 5.0 4.0 ... 10.0 10.0 6.0 12.0 12.0 11.0 14.0 12.0 5.0 15.0
2 BEAUFORT 34.72 -76.67 1.54 RSL in 2020 (cm) 10.0 6.0 13.0 12.0 8.0 ... 19.0 21.0 13.0 24.0 25.0 22.0 27.0 26.0 13.0 29.0
3 BEAUFORT 34.72 -76.67 1.54 RSL in 2030 (cm) 15.0 9.0 20.0 18.0 13.0 ... 31.0 35.0 22.0 39.0 42.0 39.0 45.0 47.0 26.0 49.0
4 BEAUFORT 34.72 -76.67 1.54 RSL in 2040 (cm) 20.0 13.0 27.0 24.0 18.0 ... 42.0 49.0 34.0 55.0 62.0 56.0 66.0 70.0 44.0 74.0
5 BEAUFORT 34.72 -76.67 1.54 RSL in 2050 (cm) 24.0 15.0 34.0 30.0 23.0 ... 56.0 66.0 49.0 75.0 86.0 79.0 93.0 102.0 67.0 107.0
6 BEAUFORT 34.72 -76.67 1.54 RSL in 2060 (cm) 30.0 18.0 41.0 37.0 28.0 ... 71.0 88.0 66.0 97.0 118.0 105.0 124.0 140.0 96.0 146.0
7 BEAUFORT 34.72 -76.67 1.54 RSL in 2070 (cm) 35.0 19.0 47.0 43.0 33.0 ... 88.0 111.0 84.0 124.0 150.0 135.0 159.0 181.0 129.0 191.0
8 BEAUFORT 34.72 -76.67 1.54 RSL in 2080 (cm) 39.0 21.0 52.0 49.0 38.0 ... 105.0 137.0 106.0 152.0 188.0 169.0 200.0 225.0 169.0 241.0
9 BEAUFORT 34.72 -76.67 1.54 RSL in 2090 (cm) 43.0 23.0 58.0 55.0 42.0 ... 124.0 166.0 129.0 185.0 230.0 207.0 243.0 280.0 214.0 296.0
10 BEAUFORT 34.72 -76.67 1.54 RSL in 2100 (cm) 46.0 24.0 64.0 60.0 46.0 ... 144.0 199.0 155.0 220.0 279.0 251.0 294.0 339.0 263.0 360.0
11 BEAUFORT 34.72 -76.67 1.54 RSL in 2120 (cm) 52.0 30.0 73.0 70.0 54.0 ... 167.0 235.0 198.0 278.0 360.0 327.0 387.0 455.0 373.0 507.0
12 BEAUFORT 34.72 -76.67 1.54 RSL in 2150 (cm) 61.0 30.0 88.0 87.0 63.0 ... 232.0 346.0 288.0 406.0 545.0 490.0 580.0 698.0 582.0 759.0
13 BEAUFORT 34.72 -76.67 1.54 RSL in 2200 (cm) 74.0 32.0 111.0 114.0 73.0 ... 357.0 561.0 451.0 666.0 915.0 809.0 968.0 1151.0 1029.0 1244.0

3402 rows × 23 columns


In [ ]: