In [14]:
# Plot forecast water levels from NECOFS model from list of lon,lat locations
# (uses the nearest point, no interpolation)
import netCDF4
import datetime as dt
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from StringIO import StringIO
%matplotlib inline
In [15]:
#NECOFS MassBay grid
model='Massbay'
#url='http://www.smast.umassd.edu:8080/thredds/dodsC/FVCOM/NECOFS/Forecasts/NECOFS_FVCOM_OCEAN_MASSBAY_FORECAST.nc'
# GOM3 Grid
#model='GOM3'
url='http://www.smast.umassd.edu:8080/thredds/dodsC/FVCOM/NECOFS/Forecasts/NECOFS_GOM3_FORECAST.nc'
In [16]:
# Enter desired (Station, Lat, Lon) values here:
x = '''
Station, Lat, Lon
Boston, 42.368186, -71.047984
Scituate Harbor, 42.199447, -70.720090
Scituate Beach, 42.209973, -70.724523
Falmouth Harbor, 41.541575, -70.608020
Marion, 41.689008, -70.746576
Marshfield, 42.108480, -70.648691
Provincetown, 42.042745, -70.171180
Sandwich, 41.767990, -70.466219
Hampton Bay, 42.900103, -70.818510
Gloucester, 42.610253, -70.660570
'''
In [17]:
def dms2dd(d,m,s):
return d+(m+s/60.)/60.
In [18]:
dms2dd(41,33,15.7)
Out[18]:
In [19]:
-dms2dd(70,30,20.2)
Out[19]:
In [20]:
x = '''
Station, Lat, Lon
Falmouth Harbor, 41.541575, -70.608020
Sage Lot Pond, 41.554361, -70.505611
'''
In [21]:
x = '''
Station, Lat, Lon
Boston, 42.368186, -71.047984
Carolyn Seep Spot, 39.8083, -69.5917
Falmouth Harbor, 41.541575, -70.608020
'''
In [22]:
# Create a Pandas DataFrame
obs=pd.read_csv(StringIO(x.strip()), sep=",\s*",index_col='Station')
In [23]:
obs
Out[23]:
In [24]:
# find the indices of the points in (x,y) closest to the points in (xi,yi)
def nearxy(x,y,xi,yi):
ind = np.ones(len(xi),dtype=int)
for i in np.arange(len(xi)):
dist = np.sqrt((x-xi[i])**2+(y-yi[i])**2)
ind[i] = dist.argmin()
return ind
In [25]:
# open NECOFS remote OPeNDAP dataset
nc=netCDF4.Dataset(url).variables
In [26]:
# find closest NECOFS nodes to station locations
obs['0-Based Index'] = nearxy(nc['lon'][:],nc['lat'][:],obs['Lon'],obs['Lat'])
obs
Out[26]:
In [27]:
# get time values and convert to datetime objects
times = nc['time']
jd = netCDF4.num2date(times[:],times.units)
In [31]:
# get all time steps of water level from each station
nsta = len(obs)
z = np.ones((len(jd),nsta))
for i in range(nsta):
z[:,i] = nc['zeta'][:,obs['0-Based Index'][i]]
In [32]:
# make a DataFrame out of the interpolated time series at each location
zvals=pd.DataFrame(z,index=jd,columns=obs.index)
In [33]:
# list out a few values
zvals.head()
Out[33]:
In [35]:
# plotting at DataFrame is easy!
ax=zvals.plot(figsize=(16,4),grid=True,title=('NECOFS Forecast Water Level from %s Forecast' % model),legend=False);
# read units from dataset for ylabel
plt.ylabel(nc['zeta'].units)
# plotting the legend outside the axis is a bit tricky
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5));
In [36]:
# what is the maximum water level at Scituate over this period?
zvals['Boston'].max()
Out[36]:
In [37]:
# make a new DataFrame of maximum water levels at all stations
b=pd.DataFrame(zvals.idxmax(),columns=['time of max water level (UTC)'])
# create heading for new column containing max water level
zmax_heading='zmax (%s)' % nc['zeta'].units
# Add new column to DataFrame
b[zmax_heading]=zvals.max()
In [38]:
b
Out[38]:
In [ ]:
In [ ]:
In [ ]: