In [75]:
import netCDF4

In [3]:
url='http://comt.sura.org/thredds/dodsC/comt_1_archive_full/estuarine_hypoxia/VIMS_EFDC/2004_DO3d/Output/EFDC_ele2d_20040101to_20041225.nc'

In [4]:
nc = netCDF4.Dataset(url)

In [5]:
ncv = nc.variables

In [6]:
ncv.keys()


Out[6]:
[u'Water_Level', u'Time', u'X', u'Y', u'Latitude', u'Longtitude', u'LIJ']

In [7]:
lij=ncv['LIJ'][:,:]

In [8]:
shape(lij)


Out[8]:
(3, 8932)

In [9]:
lij[:,0]


Out[9]:
array([ 1, 88,  2], dtype=int32)

In [10]:
lij[:,-1]


Out[10]:
array([8932,   87,  240], dtype=int32)

In [11]:
lon = ncv['Longtitude'][:,:]

In [12]:
lat = ncv['Latitude'][:,:]

In [13]:
lon = ma.masked_where(lon==-999.,lon)
lat = ma.masked_where(lat==-999.,lat)

In [14]:
zt= ncv['Water_Level'][:,0]

In [15]:
zeta = zeros_like(lon)
zeta = ma.masked_where(lon==-999.,zeta)
zeta[lij[2,:]-1,lij[1,:]-1]=zt

In [16]:
pcolor(lon,lat,zeta)


Out[16]:
<matplotlib.collections.PolyCollection at 0x3813110>

In [43]:
nco = netCDF4.Dataset('efdc.nc','r+')

In [44]:
ncov = nco.variables

In [45]:
ncov['lon'][:,:]=lon
ncov['lat'][:,:]=lat

In [46]:
ncov['zeta'][0,:,:]=zeta
r = shape(ncov['do'][0,:,:,:])

In [47]:
nco.close()

In [48]:
nc2=netCDF4.Dataset('efdc.nc')
nc2v = nc2.variables
lon = nc2v['lon'][:,:]
lat = nc2v['lat'][:,:]
zeta = nc2v['zeta'][0,:,:]

In [49]:
pcolor(lon,lat,zeta)


Out[49]:
<matplotlib.collections.PolyCollection at 0x56e46d0>

In [76]:
url='http://comt.sura.org/thredds/dodsC/comt_1_archive_full/estuarine_hypoxia/VIMS_EFDC/2004_DO3d/Output/EFDC_DO3d_20040101_to_20040131.nc'

In [77]:
nc = netCDF4.Dataset(url)
ncv = nc.variables

In [78]:
nc.variables.keys()


Out[78]:
[u'DO', u'Time', u'X', u'Y', u'Latitude', u'Longtitude', u'LIJ']

In [79]:
len(ncv['Time'])


Out[79]:
6

In [71]:
dox = zeros(r)

In [72]:
doxt = ncv['DO'][:,:,0]
print shape(doxt)


(20, 8932)

In [73]:
dox[:,lij[2,:]-1,lij[1,:]-1] = doxt

In [74]:
pcolor(lon,lat,dox[0,:])


Out[74]:
<matplotlib.collections.PolyCollection at 0x583a3d0>

In [ ]: