In [1]:
'''
Try to read the Docklight CO2 instrument text file:
#Reading the Docklight CO2 instrument file
Originally it looked like this:
Docklight Log File (ASCII) - Started 6/14/2013 11:34:17.033
RH0000 P1040X<CR><LF>
2013/06/04 19:42:23 - G 498.00 T26.78 HT0000 RH0000 P1040X<CR><LF>
2013/06/04 19:42:25 - G 498.00 T26.78 HT0000 RH0000 P1040X<CR><LF>
2013/06/04 19:42:27 - G 498.00 T26.78 HT0000 RH0000 P1040X<CR><LF>
2013/06/04 19:42:29 - G 498.00 T26.79 HT0000 RH0000 P1040X<CR><LF>
2013/06/04 19:42:31 - G 498.00 T26.80 HT0000 RH0000 P1042X<CR><LF>
and also had junk in the middle and end of the file.
So we cleaned it to look like this using notepad++:
Docklight Log File (ASCII) - Started 6/14/2013 11:34:17.033
RH0000 P1040X<CR><LF>
2013/06/04 19:42:23 498.00 26.78 0000 0000 1040
2013/06/04 19:42:25 498.00 26.78 0000 0000 1040
2013/06/04 19:42:27 498.00 26.78 0000 0000 1040
2013/06/04 19:42:29 498.00 26.79 0000 0000 1040
2013/06/04 19:42:31 498.00 26.80 0000 0000 1042
'''
In [25]:
import pandas as pd
file='./data/ICO2sensordata_asc.txt'
In [26]:
df = pd.read_csv(file,skiprows = [0,1],parse_dates = [[0,1]], index_col = 0, sep = r"\s*",
names=['date','time','CO2','Temperature','Humidity','Relative Humidity','Pressure'],header = None)
In [27]:
df.head()
Out[27]:
In [28]:
df['CO2'].plot(figsize=(12,6))
Out[28]:
In [29]:
df_5min=df.resample('5min',how = 'mean')
In [39]:
df_5min['Temperature'][0:20]
Out[39]:
In [31]:
df_5min['Temperature']['2013-06-11 12:00:00':'2013-06-11 18:00:00']
Out[31]:
In [32]:
# clip to time when instrument was in water
df_5min=df_5min['2013-06-04 20:35:00':'2013-06-11 17:15:00']
In [33]:
df_5min[['CO2','Temperature']].plot(figsize=(12,4),secondary_y='Temperature');
In [34]:
df_5min[['Humidity','Relative Humidity']].plot(figsize=(12,4));
In [35]:
df_5min['Pressure'].plot(figsize=(12,4));
In [36]:
# look at correlation between Temp and CO2
corrcoef(df_5min['Temperature'],df_5min['CO2'])
Out[36]:
In [37]:
plot(df_5min['Temperature'],df_5min['CO2'],'go');
grid();
In [ ]: