OLS Regression Results
================================================================================
Dep. Variable: SuggestedRetailPrice R-squared: 0.948
Model: OLS Adj. R-squared: 0.946
Method: Least Squares F-statistic: 590.1
Date: Mon, 13 Jun 2016 Prob (F-statistic): 8.48e-142
Time: 01:43:20 Log-Likelihood: -2425.9
No. Observations: 234 AIC: 4866.
Df Residuals: 227 BIC: 4890.
Df Model: 7
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
EngineSize -4612.4886 1558.366 -2.960 0.003 -7683.202 -1541.775
Cylinders 3136.5695 1000.218 3.136 0.002 1165.670 5107.469
Horsepower 174.1162 16.966 10.263 0.000 140.685 207.547
HighwayMPG 247.5936 187.573 1.320 0.188 -122.014 617.201
Weight 11.8694 2.757 4.305 0.000 6.437 17.302
WheelBase -519.2678 122.805 -4.228 0.000 -761.250 -277.285
Hybrid 9125.5752 5953.596 1.533 0.127 -2605.804 2.09e+04
==============================================================================
Omnibus: 112.515 Durbin-Watson: 1.061
Prob(Omnibus): 0.000 Jarque-Bera (JB): 735.101
Skew: 1.779 Prob(JB): 2.37e-160
Kurtosis: 10.921 Cond. No. 3.92e+04
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 3.92e+04. This might indicate that there are
strong multicollinearity or other numerical problems.