/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/ipykernel/__main__.py:54: UserWarning: Update your `Model` call to the Keras 2 API: `Model(outputs=[<tf.Tenso..., inputs=Tensor("in...)`
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/ipykernel/__main__.py:29: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, 54, 54, 3) 0
____________________________________________________________________________________________________
conv1 (Conv2D) (None, 54, 54, 64) 4864 input_1[0][0]
____________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 27, 27, 64) 0 conv1[0][0]
____________________________________________________________________________________________________
batch_normalization_1 (BatchNorm (None, 27, 27, 64) 256 max_pooling2d_1[0][0]
____________________________________________________________________________________________________
dropout_1 (Dropout) (None, 27, 27, 64) 0 batch_normalization_1[0][0]
____________________________________________________________________________________________________
conv2 (Conv2D) (None, 27, 27, 128) 204928 dropout_1[0][0]
____________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 13, 13, 128) 0 conv2[0][0]
____________________________________________________________________________________________________
batch_normalization_2 (BatchNorm (None, 13, 13, 128) 512 max_pooling2d_2[0][0]
____________________________________________________________________________________________________
dropout_2 (Dropout) (None, 13, 13, 128) 0 batch_normalization_2[0][0]
____________________________________________________________________________________________________
conv3 (Conv2D) (None, 13, 13, 256) 819456 dropout_2[0][0]
____________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 6, 6, 256) 0 conv3[0][0]
____________________________________________________________________________________________________
batch_normalization_3 (BatchNorm (None, 6, 6, 256) 1024 max_pooling2d_3[0][0]
____________________________________________________________________________________________________
dropout_3 (Dropout) (None, 6, 6, 256) 0 batch_normalization_3[0][0]
____________________________________________________________________________________________________
conv4 (Conv2D) (None, 6, 6, 1024) 6554624 dropout_3[0][0]
____________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 3, 3, 1024) 0 conv4[0][0]
____________________________________________________________________________________________________
batch_normalization_4 (BatchNorm (None, 3, 3, 1024) 4096 max_pooling2d_4[0][0]
____________________________________________________________________________________________________
dropout_4 (Dropout) (None, 3, 3, 1024) 0 batch_normalization_4[0][0]
____________________________________________________________________________________________________
flatten_1 (Flatten) (None, 9216) 0 dropout_4[0][0]
____________________________________________________________________________________________________
dense_1 (Dense) (None, 1024) 9438208 flatten_1[0][0]
____________________________________________________________________________________________________
batch_normalization_5 (BatchNorm (None, 1024) 4096 dense_1[0][0]
____________________________________________________________________________________________________
dropout_5 (Dropout) (None, 1024) 0 batch_normalization_5[0][0]
____________________________________________________________________________________________________
dense_2 (Dense) (None, 1024) 1049600 dropout_5[0][0]
____________________________________________________________________________________________________
batch_normalization_6 (BatchNorm (None, 1024) 4096 dense_2[0][0]
____________________________________________________________________________________________________
dropout_6 (Dropout) (None, 1024) 0 batch_normalization_6[0][0]
____________________________________________________________________________________________________
dense_3 (Dense) (None, 1024) 1049600 dropout_6[0][0]
____________________________________________________________________________________________________
batch_normalization_7 (BatchNorm (None, 1024) 4096 dense_3[0][0]
____________________________________________________________________________________________________
dropout_7 (Dropout) (None, 1024) 0 batch_normalization_7[0][0]
____________________________________________________________________________________________________
dense_4 (Dense) (None, 5) 5125 dropout_7[0][0]
____________________________________________________________________________________________________
dense_5 (Dense) (None, 10) 10250 dropout_7[0][0]
____________________________________________________________________________________________________
dense_6 (Dense) (None, 10) 10250 dropout_7[0][0]
____________________________________________________________________________________________________
dense_7 (Dense) (None, 10) 10250 dropout_7[0][0]
____________________________________________________________________________________________________
dense_8 (Dense) (None, 10) 10250 dropout_7[0][0]
____________________________________________________________________________________________________
dense_9 (Dense) (None, 10) 10250 dropout_7[0][0]
____________________________________________________________________________________________________
Length (Activation) (None, 5) 0 dense_4[0][0]
____________________________________________________________________________________________________
Digit0 (Activation) (None, 10) 0 dense_5[0][0]
____________________________________________________________________________________________________
Digit1 (Activation) (None, 10) 0 dense_6[0][0]
____________________________________________________________________________________________________
Digit2 (Activation) (None, 10) 0 dense_7[0][0]
____________________________________________________________________________________________________
Digit3 (Activation) (None, 10) 0 dense_8[0][0]
____________________________________________________________________________________________________
Digit4 (Activation) (None, 10) 0 dense_9[0][0]
====================================================================================================
Total params: 19,195,831
Trainable params: 19,186,743
Non-trainable params: 9,088
____________________________________________________________________________________________________
Train on 33402 samples, validate on 6534 samples
Epoch 1/25
132s - loss: 1.9380 - Length_loss: 0.4075 - Digit0_loss: 0.4192 - Digit1_loss: 0.4171 - Digit2_loss: 0.2825 - Digit3_loss: 0.2139 - Digit4_loss: 0.1977 - Length_acc: 0.8413 - Digit0_acc: 0.8304 - Digit1_acc: 0.8430 - Digit2_acc: 0.8940 - Digit3_acc: 0.9175 - Digit4_acc: 0.9232 - val_loss: 1.6966 - val_Length_loss: 0.9416 - val_Digit0_loss: 0.3189 - val_Digit1_loss: 0.2882 - val_Digit2_loss: 0.1118 - val_Digit3_loss: 0.0288 - val_Digit4_loss: 0.0074 - val_Length_acc: 0.8000 - val_Digit0_acc: 0.9000 - val_Digit1_acc: 0.9192 - val_Digit2_acc: 0.9832 - val_Digit3_acc: 0.9987 - val_Digit4_acc: 1.0000
Epoch 2/25
123s - loss: 0.7834 - Length_loss: 0.1326 - Digit0_loss: 0.2411 - Digit1_loss: 0.2705 - Digit2_loss: 0.1126 - Digit3_loss: 0.0227 - Digit4_loss: 0.0039 - Length_acc: 0.9481 - Digit0_acc: 0.9160 - Digit1_acc: 0.9165 - Digit2_acc: 0.9693 - Digit3_acc: 0.9955 - Digit4_acc: 0.9999 - val_loss: 1.8152 - val_Length_loss: 1.0760 - val_Digit0_loss: 0.3124 - val_Digit1_loss: 0.3221 - val_Digit2_loss: 0.0924 - val_Digit3_loss: 0.0107 - val_Digit4_loss: 0.0016 - val_Length_acc: 0.6766 - val_Digit0_acc: 0.8566 - val_Digit1_acc: 0.9192 - val_Digit2_acc: 0.9832 - val_Digit3_acc: 0.9987 - val_Digit4_acc: 1.0000
Epoch 3/25
123s - loss: 0.5295 - Length_loss: 0.0818 - Digit0_loss: 0.1458 - Digit1_loss: 0.1834 - Digit2_loss: 0.0974 - Digit3_loss: 0.0195 - Digit4_loss: 0.0015 - Length_acc: 0.9694 - Digit0_acc: 0.9467 - Digit1_acc: 0.9362 - Digit2_acc: 0.9700 - Digit3_acc: 0.9955 - Digit4_acc: 1.0000 - val_loss: 2.7131 - val_Length_loss: 1.6911 - val_Digit0_loss: 0.4771 - val_Digit1_loss: 0.4225 - val_Digit2_loss: 0.1121 - val_Digit3_loss: 0.0100 - val_Digit4_loss: 4.1049e-04 - val_Length_acc: 0.6766 - val_Digit0_acc: 0.8559 - val_Digit1_acc: 0.9192 - val_Digit2_acc: 0.9832 - val_Digit3_acc: 0.9987 - val_Digit4_acc: 1.0000
Epoch 4/25
123s - loss: 0.3743 - Length_loss: 0.0599 - Digit0_loss: 0.0977 - Digit1_loss: 0.1205 - Digit2_loss: 0.0775 - Digit3_loss: 0.0177 - Digit4_loss: 9.6344e-04 - Length_acc: 0.9781 - Digit0_acc: 0.9654 - Digit1_acc: 0.9579 - Digit2_acc: 0.9736 - Digit3_acc: 0.9954 - Digit4_acc: 0.9999 - val_loss: 2.4042 - val_Length_loss: 1.3864 - val_Digit0_loss: 0.4880 - val_Digit1_loss: 0.4089 - val_Digit2_loss: 0.1100 - val_Digit3_loss: 0.0106 - val_Digit4_loss: 2.8328e-04 - val_Length_acc: 0.6968 - val_Digit0_acc: 0.8660 - val_Digit1_acc: 0.9195 - val_Digit2_acc: 0.9832 - val_Digit3_acc: 0.9987 - val_Digit4_acc: 1.0000
Epoch 5/25
123s - loss: 0.2833 - Length_loss: 0.0426 - Digit0_loss: 0.0739 - Digit1_loss: 0.0898 - Digit2_loss: 0.0603 - Digit3_loss: 0.0161 - Digit4_loss: 6.5787e-04 - Length_acc: 0.9844 - Digit0_acc: 0.9746 - Digit1_acc: 0.9687 - Digit2_acc: 0.9788 - Digit3_acc: 0.9955 - Digit4_acc: 1.0000 - val_loss: 0.9059 - val_Length_loss: 0.3478 - val_Digit0_loss: 0.2406 - val_Digit1_loss: 0.2382 - val_Digit2_loss: 0.0713 - val_Digit3_loss: 0.0076 - val_Digit4_loss: 3.5858e-04 - val_Length_acc: 0.8453 - val_Digit0_acc: 0.9230 - val_Digit1_acc: 0.9326 - val_Digit2_acc: 0.9845 - val_Digit3_acc: 0.9987 - val_Digit4_acc: 1.0000
Epoch 6/25
123s - loss: 0.2286 - Length_loss: 0.0338 - Digit0_loss: 0.0606 - Digit1_loss: 0.0703 - Digit2_loss: 0.0486 - Digit3_loss: 0.0149 - Digit4_loss: 4.2412e-04 - Length_acc: 0.9877 - Digit0_acc: 0.9793 - Digit1_acc: 0.9756 - Digit2_acc: 0.9827 - Digit3_acc: 0.9955 - Digit4_acc: 1.0000 - val_loss: 2.9993 - val_Length_loss: 1.9894 - val_Digit0_loss: 0.3601 - val_Digit1_loss: 0.5296 - val_Digit2_loss: 0.1097 - val_Digit3_loss: 0.0103 - val_Digit4_loss: 2.2210e-04 - val_Length_acc: 0.6776 - val_Digit0_acc: 0.8832 - val_Digit1_acc: 0.9192 - val_Digit2_acc: 0.9832 - val_Digit3_acc: 0.9987 - val_Digit4_acc: 1.0000
Epoch 7/25
123s - loss: 0.1911 - Length_loss: 0.0260 - Digit0_loss: 0.0514 - Digit1_loss: 0.0588 - Digit2_loss: 0.0406 - Digit3_loss: 0.0139 - Digit4_loss: 3.7759e-04 - Length_acc: 0.9910 - Digit0_acc: 0.9825 - Digit1_acc: 0.9792 - Digit2_acc: 0.9857 - Digit3_acc: 0.9956 - Digit4_acc: 1.0000 - val_loss: 0.6678 - val_Length_loss: 0.1388 - val_Digit0_loss: 0.2113 - val_Digit1_loss: 0.2545 - val_Digit2_loss: 0.0567 - val_Digit3_loss: 0.0062 - val_Digit4_loss: 3.5064e-04 - val_Length_acc: 0.9511 - val_Digit0_acc: 0.9255 - val_Digit1_acc: 0.9240 - val_Digit2_acc: 0.9850 - val_Digit3_acc: 0.9987 - val_Digit4_acc: 1.0000
Epoch 8/25
123s - loss: 0.1646 - Length_loss: 0.0222 - Digit0_loss: 0.0444 - Digit1_loss: 0.0498 - Digit2_loss: 0.0348 - Digit3_loss: 0.0131 - Digit4_loss: 3.1614e-04 - Length_acc: 0.9925 - Digit0_acc: 0.9846 - Digit1_acc: 0.9825 - Digit2_acc: 0.9874 - Digit3_acc: 0.9956 - Digit4_acc: 1.0000 - val_loss: 0.5488 - val_Length_loss: 0.1931 - val_Digit0_loss: 0.1388 - val_Digit1_loss: 0.1604 - val_Digit2_loss: 0.0493 - val_Digit3_loss: 0.0068 - val_Digit4_loss: 3.3471e-04 - val_Length_acc: 0.9216 - val_Digit0_acc: 0.9491 - val_Digit1_acc: 0.9452 - val_Digit2_acc: 0.9863 - val_Digit3_acc: 0.9988 - val_Digit4_acc: 1.0000
Epoch 9/25
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-7-a8660fc1b617> in <module>()
27
28
---> 29 model.fit(trainImageData, [trainImageLengths, trainDigit0, trainDigit1, trainDigit2, trainDigit3, trainDigit4], nb_epoch=epochs, batch_size=batch_size, validation_data=(validationImageData,[validationImageLengths,validationDigit0,validationDigit1,validationDigit2,validationDigit3,validationDigit4]), callbacks=[tbCallBack], verbose=2)
30 model.save(modelFile)
31 else:
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)
1428 val_f=val_f, val_ins=val_ins, shuffle=shuffle,
1429 callback_metrics=callback_metrics,
-> 1430 initial_epoch=initial_epoch)
1431
1432 def evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None):
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/keras/engine/training.py in _fit_loop(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)
1077 batch_logs['size'] = len(batch_ids)
1078 callbacks.on_batch_begin(batch_index, batch_logs)
-> 1079 outs = f(ins_batch)
1080 if not isinstance(outs, list):
1081 outs = [outs]
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
2266 updated = session.run(self.outputs + [self.updates_op],
2267 feed_dict=feed_dict,
-> 2268 **self.session_kwargs)
2269 return updated[:len(self.outputs)]
2270
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
765 try:
766 result = self._run(None, fetches, feed_dict, options_ptr,
--> 767 run_metadata_ptr)
768 if run_metadata:
769 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
963 if final_fetches or final_targets:
964 results = self._do_run(handle, final_targets, final_fetches,
--> 965 feed_dict_string, options, run_metadata)
966 else:
967 results = []
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1013 if handle is None:
1014 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015 target_list, options, run_metadata)
1016 else:
1017 return self._do_call(_prun_fn, self._session, handle, feed_dict,
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1020 def _do_call(self, fn, *args):
1021 try:
-> 1022 return fn(*args)
1023 except errors.OpError as e:
1024 message = compat.as_text(e.message)
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1002 return tf_session.TF_Run(session, options,
1003 feed_dict, fetch_list, target_list,
-> 1004 status, run_metadata)
1005
1006 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: