In [1]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(style="white")

# Load the dataset
df = pd.read_csv('raw/2016-17-ClassCentral-Survey-data-noUserText.csv', decimal=',', encoding = "ISO-8859-1")

# Compute the correlation matrix
corr = df.corr()

# Generate a mask for the upper triangle
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True

# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))

# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)

# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,
            square=True, linewidths=.5, cbar_kws={"shrink": .5})


Out[1]:
<matplotlib.axes._subplots.AxesSubplot at 0xa02c4e0>

In [2]:
plt.show()



In [ ]: