In [1]:
import numpy as np
import glob
In [2]:
data_files = glob.glob('../../exp-vqa-shape/vqa_shape_dataset/train.*.input.npy')
In [3]:
count = 0
image_sum = 0
for file in data_files:
data = np.load(file)
image_sum += np.sum(data, axis=0)
count += len(data)
image_mean = image_sum / count
In [4]:
np.save('../../exp-vqa-shape/data/image_mean.npy', image_mean.astype(np.float32))
In [5]:
import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(image_mean.astype(np.uint8))
Out[5]: