In [14]:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
In [39]:
x = tf.constant([1.0,2.0,3.0,4.0,5.0,6.0], shape=[1, 6], name='x')
y = tf.constant([1.0,2.0,3.0,4.0,5.0,6.0], shape=[1, 6], name='y')
with tf.name_scope ("array_x"):
with tf.Session() as sess:
for i in range(len(sess.run(x))):
output = sess.run(x[i])
print(output)
with tf.name_scope ("array_y"):
with tf.Session() as sess:
for i in range(len(sess.run(y))):
output1 = sess.run(y[i])
print(output1)
In [32]:
with tf.name_scope("Scope_variance"):
mean_of_x=tf.reduce_mean(x)
mean_of_y =tf.reduce_mean(y)
In [34]:
with tf.name_scope("Scope_variance"):
## mean_sqx=tf.multiply( mean_of_x, mean_of_x)
##mean_sqy=tf.multiply( mean_of_y, mean_of_y)
subtract1=tf.subtract(x,mean_of_x)
sess=tf.Session()
print( sess.run(mean_of_x))
multiply1=tf.multiply(subtract1,subtract1)
variance=tf.reduce_sum(multiply1)
sess=tf.Session()
print( sess.run(variance))
In [20]:
with tf.name_scope("Scope_covariance"):
with tf.name_scope("Scope_multication"):
subtract2=tf.subtract(y,mean_of_y)
multiply2=tf.multiply(subtract1,subtract2)
covariance=tf.reduce_sum(multiply2)
sess=tf.Session()
print(sess.run(covariance))
In [21]:
with tf.name_scope("Scope_value_c"):
c=tf.divide(covariance,variance)
sess=tf.Session()
print(sess.run(c))
In [35]:
with tf.name_scope("Scope_value_m"):
with tf.name_scope("Scope_multiply"):
multiply3=tf.multiply(c,mean_of_x)
with tf.name_scope("Scope_subtract"):
m=tf.subtract(mean_of_y,multiply3)
sess=tf.Session()
print(sess.run(m))
In [23]:
writer = tf.summary.FileWriter("/tmp/tboard/assignment2", sess.graph)
In [41]:
with tf.Session() as sess:
x1=sess.run(x)
y1=sess.run(y)
array_X = np.asarray(x1)
array_Y = np.asarray(y1)
value_X=tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
with tf.Session() as sess:
value_X1=sess.run(value_X)
value_X2=np.asarray(value_X1)
value_Y=[0]*6
with tf.Session() as sess:
for i in range(len(sess.run(value_X))):
output = sess.run(value_X[i])
t1=tf.multiply(output,c)
t2=tf.add(t1,m)
value_Y[i]=sess.run(t2)
print(value_Y)
In [42]:
plt.plot(array_X, array_Y, 'bo', label='value')
plt.plot(value_X2, value_Y, label='fittedline')
plt.legend()
plt.show()
In [43]:
#root mean square
with tf.name_scope("rootmean_square"):
rootmean=tf.sqrt(tf.reduce_mean(tf.squared_difference(array_X,array_Y)))
with tf.Session() as sess:
print(sess.run(rootmean))
In [ ]: