Correlation function of DR12Q SDSS Quasar Catalog

First import all the modules such as healpy and astropy needed for analyzing the structure


In [1]:
import healpix_util as hu
import astropy as ap
import numpy as np
from astropy.io import fits
from astropy.table import Table
import astropy.io.ascii as ascii
from astropy.io import fits
from astropy.constants import c
import matplotlib.pyplot as plt
import math as m
from math import pi
#from scipy.constants import c
import scipy.special as sp
from astroML.decorators import pickle_results
from scipy import integrate
import warnings
from sklearn.neighbors import BallTree
import pickle
import multiprocessing as mp
import time
from aptestmetricdt import *
from aptestmetricdz import *
from scipy.spatial import distance as d
from apcat import *
from progressbar import *
from tqdm import *
from functools import partial
import pymangle
from apdz import *
from apdt import *
from scipy.optimize import curve_fit
#from astroML.datasets import fetch_sdss_specgals
#from astroML.correlation import bootstrap_two_point_angular
%matplotlib inline

Read the data file (taken from http://cosmo.nyu.edu/~eak306/SDSS-LRG.html ) converted to ascii with comoving distance etc. in V01 reading from pkl files for faster read


In [2]:
# Getting back the objects:
with open('../output/DR12Qbin1.pkl') as f:  # Python 3: open(..., 'rb')
    dat = pickle.load(f)
dat


Out[2]:
array([[  1.36035800e+00,   9.30000000e-05,  -3.54870000e-02],
       [  1.13454400e+00,   6.82000000e-04,   2.43272000e-01],
       [  8.35325000e-01,   7.58000000e-04,  -1.42169000e-01],
       ..., 
       [  7.86509000e-01,   6.28274400e+00,   2.60439000e-01],
       [  8.35873000e-01,   6.28277000e+00,   1.59740000e-01],
       [  1.19725300e+00,   6.28307200e+00,   3.69546000e-01]])

In [3]:
dd2d=np.zeros((20,20))

In [4]:
len(dat)


Out[4]:
48309

In [5]:
rng = np.array([[0, 0.02], [0, 0.02]])

In [6]:
dd2d


Out[6]:
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.]])

In [7]:
%%time
dist0=d.cdist([dat[0],],dat,APdz)[0]
dist1=d.cdist([dat[0],],dat,APzdth)[0]
dd2d+=np.histogram2d(dist0, dist1, bins=20, range=rng)[0]


CPU times: user 421 ms, sys: 13 ms, total: 434 ms
Wall time: 425 ms

In [8]:
dd2d


Out[8]:
array([[ 1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.]])

In [9]:
dd2d=np.zeros((20,20))

In [10]:
%%time
while(len(dat))>0:
    dist0=d.cdist([dat[0],],dat,APdz)[0]
    dist1=d.cdist([dat[0],],dat,APzdth)[0]
    dd2d+=np.histogram2d(dist0, dist1, bins=20, range=rng)[0]
    dat=np.delete(dat,0,axis=0)
    if len(dat)%1000==0:
        print len(dat)/1000 
print dd2d


/Users/rohin/anaconda/lib/python2.7/site-packages/numpy/lib/function_base.py:804: RuntimeWarning: invalid value encountered in greater_equal
  not_smaller_than_edge = (sample[:, i] >= edges[i][-1])
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
[[  4.58750000e+04   9.50000000e+01   1.12000000e+02   1.41000000e+02
    1.43000000e+02   1.58000000e+02   1.79000000e+02   1.99000000e+02
    1.68000000e+02   2.26000000e+02   2.06000000e+02   2.53000000e+02
    2.96000000e+02   2.69000000e+02   2.81000000e+02   3.30000000e+02
    3.42000000e+02   3.25000000e+02   3.15000000e+02   3.75000000e+02]
 [  4.00000000e+01   8.90000000e+01   1.12000000e+02   1.33000000e+02
    1.26000000e+02   1.51000000e+02   1.80000000e+02   1.57000000e+02
    1.86000000e+02   2.18000000e+02   2.02000000e+02   2.20000000e+02
    2.67000000e+02   2.61000000e+02   3.11000000e+02   2.81000000e+02
    3.10000000e+02   3.53000000e+02   3.67000000e+02   3.62000000e+02]
 [  2.90000000e+01   6.00000000e+01   8.80000000e+01   1.11000000e+02
    9.50000000e+01   1.33000000e+02   1.70000000e+02   1.82000000e+02
    1.91000000e+02   2.18000000e+02   2.28000000e+02   2.43000000e+02
    2.56000000e+02   2.71000000e+02   2.91000000e+02   2.65000000e+02
    3.06000000e+02   3.27000000e+02   3.66000000e+02   3.78000000e+02]
 [  1.90000000e+01   7.00000000e+01   8.80000000e+01   1.10000000e+02
    1.25000000e+02   1.51000000e+02   1.62000000e+02   1.61000000e+02
    2.11000000e+02   2.13000000e+02   2.32000000e+02   2.50000000e+02
    2.60000000e+02   2.47000000e+02   2.73000000e+02   3.27000000e+02
    3.05000000e+02   3.33000000e+02   3.53000000e+02   3.82000000e+02]
 [  2.20000000e+01   4.70000000e+01   6.80000000e+01   1.03000000e+02
    1.09000000e+02   1.37000000e+02   1.48000000e+02   1.92000000e+02
    1.77000000e+02   2.05000000e+02   2.18000000e+02   1.91000000e+02
    2.42000000e+02   2.81000000e+02   2.84000000e+02   3.12000000e+02
    3.16000000e+02   3.08000000e+02   3.87000000e+02   3.54000000e+02]
 [  1.90000000e+01   4.10000000e+01   7.10000000e+01   9.40000000e+01
    1.08000000e+02   1.31000000e+02   1.54000000e+02   1.40000000e+02
    1.88000000e+02   1.78000000e+02   1.86000000e+02   2.67000000e+02
    2.59000000e+02   2.64000000e+02   2.62000000e+02   2.98000000e+02
    3.01000000e+02   2.94000000e+02   3.29000000e+02   3.79000000e+02]
 [  1.40000000e+01   3.80000000e+01   6.30000000e+01   8.70000000e+01
    1.21000000e+02   1.23000000e+02   1.54000000e+02   1.81000000e+02
    1.77000000e+02   1.69000000e+02   2.22000000e+02   2.30000000e+02
    2.44000000e+02   2.42000000e+02   3.11000000e+02   2.77000000e+02
    2.87000000e+02   3.23000000e+02   3.84000000e+02   3.59000000e+02]
 [  1.00000000e+01   4.60000000e+01   6.40000000e+01   8.30000000e+01
    8.90000000e+01   1.31000000e+02   1.38000000e+02   1.64000000e+02
    1.58000000e+02   1.83000000e+02   2.14000000e+02   2.09000000e+02
    2.41000000e+02   2.39000000e+02   3.05000000e+02   3.15000000e+02
    3.09000000e+02   3.37000000e+02   3.17000000e+02   3.59000000e+02]
 [  9.00000000e+00   3.00000000e+01   5.40000000e+01   1.00000000e+02
    9.10000000e+01   1.12000000e+02   1.20000000e+02   1.55000000e+02
    1.57000000e+02   1.86000000e+02   1.97000000e+02   2.23000000e+02
    2.43000000e+02   2.63000000e+02   2.82000000e+02   2.83000000e+02
    2.97000000e+02   3.15000000e+02   3.17000000e+02   3.29000000e+02]
 [  1.40000000e+01   3.40000000e+01   4.30000000e+01   8.20000000e+01
    8.80000000e+01   1.16000000e+02   1.37000000e+02   1.41000000e+02
    1.73000000e+02   1.81000000e+02   2.09000000e+02   2.44000000e+02
    2.45000000e+02   3.01000000e+02   2.56000000e+02   2.85000000e+02
    2.85000000e+02   3.39000000e+02   3.25000000e+02   3.76000000e+02]
 [  1.40000000e+01   2.20000000e+01   6.40000000e+01   6.40000000e+01
    9.90000000e+01   1.02000000e+02   1.51000000e+02   1.60000000e+02
    1.81000000e+02   1.83000000e+02   2.35000000e+02   2.16000000e+02
    2.45000000e+02   2.48000000e+02   2.90000000e+02   2.76000000e+02
    2.97000000e+02   3.32000000e+02   3.59000000e+02   3.54000000e+02]
 [  1.00000000e+01   3.80000000e+01   4.90000000e+01   8.00000000e+01
    8.50000000e+01   1.23000000e+02   1.23000000e+02   1.56000000e+02
    1.61000000e+02   1.76000000e+02   2.01000000e+02   2.21000000e+02
    2.35000000e+02   2.61000000e+02   2.89000000e+02   2.91000000e+02
    3.01000000e+02   3.44000000e+02   3.46000000e+02   3.58000000e+02]
 [  1.30000000e+01   1.80000000e+01   6.10000000e+01   6.70000000e+01
    9.30000000e+01   1.26000000e+02   1.20000000e+02   1.49000000e+02
    1.42000000e+02   1.76000000e+02   2.06000000e+02   2.07000000e+02
    2.18000000e+02   2.45000000e+02   2.95000000e+02   2.97000000e+02
    3.16000000e+02   3.41000000e+02   3.47000000e+02   3.46000000e+02]
 [  1.20000000e+01   2.80000000e+01   5.50000000e+01   6.20000000e+01
    9.00000000e+01   1.03000000e+02   1.27000000e+02   1.48000000e+02
    1.90000000e+02   1.99000000e+02   2.04000000e+02   2.16000000e+02
    2.58000000e+02   2.38000000e+02   2.79000000e+02   2.85000000e+02
    3.03000000e+02   3.06000000e+02   3.37000000e+02   3.45000000e+02]
 [  8.00000000e+00   2.50000000e+01   5.10000000e+01   6.20000000e+01
    1.00000000e+02   1.13000000e+02   1.42000000e+02   1.25000000e+02
    1.59000000e+02   1.84000000e+02   1.88000000e+02   1.99000000e+02
    2.39000000e+02   2.50000000e+02   2.90000000e+02   2.82000000e+02
    2.84000000e+02   3.12000000e+02   3.80000000e+02   3.53000000e+02]
 [  1.10000000e+01   2.60000000e+01   5.10000000e+01   6.90000000e+01
    9.10000000e+01   1.03000000e+02   1.21000000e+02   1.50000000e+02
    1.55000000e+02   1.84000000e+02   1.93000000e+02   2.10000000e+02
    2.25000000e+02   2.53000000e+02   2.75000000e+02   2.80000000e+02
    2.98000000e+02   3.17000000e+02   3.16000000e+02   3.64000000e+02]
 [  1.20000000e+01   2.00000000e+01   4.80000000e+01   6.80000000e+01
    7.80000000e+01   9.20000000e+01   1.28000000e+02   1.45000000e+02
    1.50000000e+02   1.82000000e+02   1.98000000e+02   2.23000000e+02
    2.26000000e+02   2.55000000e+02   2.58000000e+02   2.51000000e+02
    2.81000000e+02   2.59000000e+02   3.32000000e+02   3.81000000e+02]
 [  7.00000000e+00   4.00000000e+01   5.30000000e+01   6.50000000e+01
    9.10000000e+01   1.05000000e+02   1.25000000e+02   1.39000000e+02
    1.77000000e+02   1.94000000e+02   2.20000000e+02   2.09000000e+02
    2.14000000e+02   2.30000000e+02   2.88000000e+02   2.68000000e+02
    2.66000000e+02   3.03000000e+02   3.12000000e+02   2.99000000e+02]
 [  5.00000000e+00   2.70000000e+01   3.50000000e+01   6.60000000e+01
    7.70000000e+01   1.02000000e+02   1.20000000e+02   1.45000000e+02
    1.57000000e+02   1.75000000e+02   1.83000000e+02   2.18000000e+02
    2.31000000e+02   2.46000000e+02   2.60000000e+02   2.54000000e+02
    2.97000000e+02   2.96000000e+02   3.31000000e+02   3.52000000e+02]
 [  1.00000000e+01   2.00000000e+01   3.90000000e+01   6.60000000e+01
    8.60000000e+01   1.18000000e+02   1.04000000e+02   1.30000000e+02
    1.70000000e+02   1.85000000e+02   2.11000000e+02   2.19000000e+02
    2.10000000e+02   2.61000000e+02   2.52000000e+02   2.43000000e+02
    2.94000000e+02   3.13000000e+02   3.30000000e+02   3.39000000e+02]]
CPU times: user 3h 47min 27s, sys: 2min 18s, total: 3h 49min 45s
Wall time: 3h 49min 51s

In [11]:
dd2d


Out[11]:
array([[  4.58750000e+04,   9.50000000e+01,   1.12000000e+02,
          1.41000000e+02,   1.43000000e+02,   1.58000000e+02,
          1.79000000e+02,   1.99000000e+02,   1.68000000e+02,
          2.26000000e+02,   2.06000000e+02,   2.53000000e+02,
          2.96000000e+02,   2.69000000e+02,   2.81000000e+02,
          3.30000000e+02,   3.42000000e+02,   3.25000000e+02,
          3.15000000e+02,   3.75000000e+02],
       [  4.00000000e+01,   8.90000000e+01,   1.12000000e+02,
          1.33000000e+02,   1.26000000e+02,   1.51000000e+02,
          1.80000000e+02,   1.57000000e+02,   1.86000000e+02,
          2.18000000e+02,   2.02000000e+02,   2.20000000e+02,
          2.67000000e+02,   2.61000000e+02,   3.11000000e+02,
          2.81000000e+02,   3.10000000e+02,   3.53000000e+02,
          3.67000000e+02,   3.62000000e+02],
       [  2.90000000e+01,   6.00000000e+01,   8.80000000e+01,
          1.11000000e+02,   9.50000000e+01,   1.33000000e+02,
          1.70000000e+02,   1.82000000e+02,   1.91000000e+02,
          2.18000000e+02,   2.28000000e+02,   2.43000000e+02,
          2.56000000e+02,   2.71000000e+02,   2.91000000e+02,
          2.65000000e+02,   3.06000000e+02,   3.27000000e+02,
          3.66000000e+02,   3.78000000e+02],
       [  1.90000000e+01,   7.00000000e+01,   8.80000000e+01,
          1.10000000e+02,   1.25000000e+02,   1.51000000e+02,
          1.62000000e+02,   1.61000000e+02,   2.11000000e+02,
          2.13000000e+02,   2.32000000e+02,   2.50000000e+02,
          2.60000000e+02,   2.47000000e+02,   2.73000000e+02,
          3.27000000e+02,   3.05000000e+02,   3.33000000e+02,
          3.53000000e+02,   3.82000000e+02],
       [  2.20000000e+01,   4.70000000e+01,   6.80000000e+01,
          1.03000000e+02,   1.09000000e+02,   1.37000000e+02,
          1.48000000e+02,   1.92000000e+02,   1.77000000e+02,
          2.05000000e+02,   2.18000000e+02,   1.91000000e+02,
          2.42000000e+02,   2.81000000e+02,   2.84000000e+02,
          3.12000000e+02,   3.16000000e+02,   3.08000000e+02,
          3.87000000e+02,   3.54000000e+02],
       [  1.90000000e+01,   4.10000000e+01,   7.10000000e+01,
          9.40000000e+01,   1.08000000e+02,   1.31000000e+02,
          1.54000000e+02,   1.40000000e+02,   1.88000000e+02,
          1.78000000e+02,   1.86000000e+02,   2.67000000e+02,
          2.59000000e+02,   2.64000000e+02,   2.62000000e+02,
          2.98000000e+02,   3.01000000e+02,   2.94000000e+02,
          3.29000000e+02,   3.79000000e+02],
       [  1.40000000e+01,   3.80000000e+01,   6.30000000e+01,
          8.70000000e+01,   1.21000000e+02,   1.23000000e+02,
          1.54000000e+02,   1.81000000e+02,   1.77000000e+02,
          1.69000000e+02,   2.22000000e+02,   2.30000000e+02,
          2.44000000e+02,   2.42000000e+02,   3.11000000e+02,
          2.77000000e+02,   2.87000000e+02,   3.23000000e+02,
          3.84000000e+02,   3.59000000e+02],
       [  1.00000000e+01,   4.60000000e+01,   6.40000000e+01,
          8.30000000e+01,   8.90000000e+01,   1.31000000e+02,
          1.38000000e+02,   1.64000000e+02,   1.58000000e+02,
          1.83000000e+02,   2.14000000e+02,   2.09000000e+02,
          2.41000000e+02,   2.39000000e+02,   3.05000000e+02,
          3.15000000e+02,   3.09000000e+02,   3.37000000e+02,
          3.17000000e+02,   3.59000000e+02],
       [  9.00000000e+00,   3.00000000e+01,   5.40000000e+01,
          1.00000000e+02,   9.10000000e+01,   1.12000000e+02,
          1.20000000e+02,   1.55000000e+02,   1.57000000e+02,
          1.86000000e+02,   1.97000000e+02,   2.23000000e+02,
          2.43000000e+02,   2.63000000e+02,   2.82000000e+02,
          2.83000000e+02,   2.97000000e+02,   3.15000000e+02,
          3.17000000e+02,   3.29000000e+02],
       [  1.40000000e+01,   3.40000000e+01,   4.30000000e+01,
          8.20000000e+01,   8.80000000e+01,   1.16000000e+02,
          1.37000000e+02,   1.41000000e+02,   1.73000000e+02,
          1.81000000e+02,   2.09000000e+02,   2.44000000e+02,
          2.45000000e+02,   3.01000000e+02,   2.56000000e+02,
          2.85000000e+02,   2.85000000e+02,   3.39000000e+02,
          3.25000000e+02,   3.76000000e+02],
       [  1.40000000e+01,   2.20000000e+01,   6.40000000e+01,
          6.40000000e+01,   9.90000000e+01,   1.02000000e+02,
          1.51000000e+02,   1.60000000e+02,   1.81000000e+02,
          1.83000000e+02,   2.35000000e+02,   2.16000000e+02,
          2.45000000e+02,   2.48000000e+02,   2.90000000e+02,
          2.76000000e+02,   2.97000000e+02,   3.32000000e+02,
          3.59000000e+02,   3.54000000e+02],
       [  1.00000000e+01,   3.80000000e+01,   4.90000000e+01,
          8.00000000e+01,   8.50000000e+01,   1.23000000e+02,
          1.23000000e+02,   1.56000000e+02,   1.61000000e+02,
          1.76000000e+02,   2.01000000e+02,   2.21000000e+02,
          2.35000000e+02,   2.61000000e+02,   2.89000000e+02,
          2.91000000e+02,   3.01000000e+02,   3.44000000e+02,
          3.46000000e+02,   3.58000000e+02],
       [  1.30000000e+01,   1.80000000e+01,   6.10000000e+01,
          6.70000000e+01,   9.30000000e+01,   1.26000000e+02,
          1.20000000e+02,   1.49000000e+02,   1.42000000e+02,
          1.76000000e+02,   2.06000000e+02,   2.07000000e+02,
          2.18000000e+02,   2.45000000e+02,   2.95000000e+02,
          2.97000000e+02,   3.16000000e+02,   3.41000000e+02,
          3.47000000e+02,   3.46000000e+02],
       [  1.20000000e+01,   2.80000000e+01,   5.50000000e+01,
          6.20000000e+01,   9.00000000e+01,   1.03000000e+02,
          1.27000000e+02,   1.48000000e+02,   1.90000000e+02,
          1.99000000e+02,   2.04000000e+02,   2.16000000e+02,
          2.58000000e+02,   2.38000000e+02,   2.79000000e+02,
          2.85000000e+02,   3.03000000e+02,   3.06000000e+02,
          3.37000000e+02,   3.45000000e+02],
       [  8.00000000e+00,   2.50000000e+01,   5.10000000e+01,
          6.20000000e+01,   1.00000000e+02,   1.13000000e+02,
          1.42000000e+02,   1.25000000e+02,   1.59000000e+02,
          1.84000000e+02,   1.88000000e+02,   1.99000000e+02,
          2.39000000e+02,   2.50000000e+02,   2.90000000e+02,
          2.82000000e+02,   2.84000000e+02,   3.12000000e+02,
          3.80000000e+02,   3.53000000e+02],
       [  1.10000000e+01,   2.60000000e+01,   5.10000000e+01,
          6.90000000e+01,   9.10000000e+01,   1.03000000e+02,
          1.21000000e+02,   1.50000000e+02,   1.55000000e+02,
          1.84000000e+02,   1.93000000e+02,   2.10000000e+02,
          2.25000000e+02,   2.53000000e+02,   2.75000000e+02,
          2.80000000e+02,   2.98000000e+02,   3.17000000e+02,
          3.16000000e+02,   3.64000000e+02],
       [  1.20000000e+01,   2.00000000e+01,   4.80000000e+01,
          6.80000000e+01,   7.80000000e+01,   9.20000000e+01,
          1.28000000e+02,   1.45000000e+02,   1.50000000e+02,
          1.82000000e+02,   1.98000000e+02,   2.23000000e+02,
          2.26000000e+02,   2.55000000e+02,   2.58000000e+02,
          2.51000000e+02,   2.81000000e+02,   2.59000000e+02,
          3.32000000e+02,   3.81000000e+02],
       [  7.00000000e+00,   4.00000000e+01,   5.30000000e+01,
          6.50000000e+01,   9.10000000e+01,   1.05000000e+02,
          1.25000000e+02,   1.39000000e+02,   1.77000000e+02,
          1.94000000e+02,   2.20000000e+02,   2.09000000e+02,
          2.14000000e+02,   2.30000000e+02,   2.88000000e+02,
          2.68000000e+02,   2.66000000e+02,   3.03000000e+02,
          3.12000000e+02,   2.99000000e+02],
       [  5.00000000e+00,   2.70000000e+01,   3.50000000e+01,
          6.60000000e+01,   7.70000000e+01,   1.02000000e+02,
          1.20000000e+02,   1.45000000e+02,   1.57000000e+02,
          1.75000000e+02,   1.83000000e+02,   2.18000000e+02,
          2.31000000e+02,   2.46000000e+02,   2.60000000e+02,
          2.54000000e+02,   2.97000000e+02,   2.96000000e+02,
          3.31000000e+02,   3.52000000e+02],
       [  1.00000000e+01,   2.00000000e+01,   3.90000000e+01,
          6.60000000e+01,   8.60000000e+01,   1.18000000e+02,
          1.04000000e+02,   1.30000000e+02,   1.70000000e+02,
          1.85000000e+02,   2.11000000e+02,   2.19000000e+02,
          2.10000000e+02,   2.61000000e+02,   2.52000000e+02,
          2.43000000e+02,   2.94000000e+02,   3.13000000e+02,
          3.30000000e+02,   3.39000000e+02]])

In [12]:
with open('DR12QDDbin1.pkl','w') as f:
    pickle.dump(dd2d,f)    
dd2d


Out[12]:
array([[  4.58750000e+04,   9.50000000e+01,   1.12000000e+02,
          1.41000000e+02,   1.43000000e+02,   1.58000000e+02,
          1.79000000e+02,   1.99000000e+02,   1.68000000e+02,
          2.26000000e+02,   2.06000000e+02,   2.53000000e+02,
          2.96000000e+02,   2.69000000e+02,   2.81000000e+02,
          3.30000000e+02,   3.42000000e+02,   3.25000000e+02,
          3.15000000e+02,   3.75000000e+02],
       [  4.00000000e+01,   8.90000000e+01,   1.12000000e+02,
          1.33000000e+02,   1.26000000e+02,   1.51000000e+02,
          1.80000000e+02,   1.57000000e+02,   1.86000000e+02,
          2.18000000e+02,   2.02000000e+02,   2.20000000e+02,
          2.67000000e+02,   2.61000000e+02,   3.11000000e+02,
          2.81000000e+02,   3.10000000e+02,   3.53000000e+02,
          3.67000000e+02,   3.62000000e+02],
       [  2.90000000e+01,   6.00000000e+01,   8.80000000e+01,
          1.11000000e+02,   9.50000000e+01,   1.33000000e+02,
          1.70000000e+02,   1.82000000e+02,   1.91000000e+02,
          2.18000000e+02,   2.28000000e+02,   2.43000000e+02,
          2.56000000e+02,   2.71000000e+02,   2.91000000e+02,
          2.65000000e+02,   3.06000000e+02,   3.27000000e+02,
          3.66000000e+02,   3.78000000e+02],
       [  1.90000000e+01,   7.00000000e+01,   8.80000000e+01,
          1.10000000e+02,   1.25000000e+02,   1.51000000e+02,
          1.62000000e+02,   1.61000000e+02,   2.11000000e+02,
          2.13000000e+02,   2.32000000e+02,   2.50000000e+02,
          2.60000000e+02,   2.47000000e+02,   2.73000000e+02,
          3.27000000e+02,   3.05000000e+02,   3.33000000e+02,
          3.53000000e+02,   3.82000000e+02],
       [  2.20000000e+01,   4.70000000e+01,   6.80000000e+01,
          1.03000000e+02,   1.09000000e+02,   1.37000000e+02,
          1.48000000e+02,   1.92000000e+02,   1.77000000e+02,
          2.05000000e+02,   2.18000000e+02,   1.91000000e+02,
          2.42000000e+02,   2.81000000e+02,   2.84000000e+02,
          3.12000000e+02,   3.16000000e+02,   3.08000000e+02,
          3.87000000e+02,   3.54000000e+02],
       [  1.90000000e+01,   4.10000000e+01,   7.10000000e+01,
          9.40000000e+01,   1.08000000e+02,   1.31000000e+02,
          1.54000000e+02,   1.40000000e+02,   1.88000000e+02,
          1.78000000e+02,   1.86000000e+02,   2.67000000e+02,
          2.59000000e+02,   2.64000000e+02,   2.62000000e+02,
          2.98000000e+02,   3.01000000e+02,   2.94000000e+02,
          3.29000000e+02,   3.79000000e+02],
       [  1.40000000e+01,   3.80000000e+01,   6.30000000e+01,
          8.70000000e+01,   1.21000000e+02,   1.23000000e+02,
          1.54000000e+02,   1.81000000e+02,   1.77000000e+02,
          1.69000000e+02,   2.22000000e+02,   2.30000000e+02,
          2.44000000e+02,   2.42000000e+02,   3.11000000e+02,
          2.77000000e+02,   2.87000000e+02,   3.23000000e+02,
          3.84000000e+02,   3.59000000e+02],
       [  1.00000000e+01,   4.60000000e+01,   6.40000000e+01,
          8.30000000e+01,   8.90000000e+01,   1.31000000e+02,
          1.38000000e+02,   1.64000000e+02,   1.58000000e+02,
          1.83000000e+02,   2.14000000e+02,   2.09000000e+02,
          2.41000000e+02,   2.39000000e+02,   3.05000000e+02,
          3.15000000e+02,   3.09000000e+02,   3.37000000e+02,
          3.17000000e+02,   3.59000000e+02],
       [  9.00000000e+00,   3.00000000e+01,   5.40000000e+01,
          1.00000000e+02,   9.10000000e+01,   1.12000000e+02,
          1.20000000e+02,   1.55000000e+02,   1.57000000e+02,
          1.86000000e+02,   1.97000000e+02,   2.23000000e+02,
          2.43000000e+02,   2.63000000e+02,   2.82000000e+02,
          2.83000000e+02,   2.97000000e+02,   3.15000000e+02,
          3.17000000e+02,   3.29000000e+02],
       [  1.40000000e+01,   3.40000000e+01,   4.30000000e+01,
          8.20000000e+01,   8.80000000e+01,   1.16000000e+02,
          1.37000000e+02,   1.41000000e+02,   1.73000000e+02,
          1.81000000e+02,   2.09000000e+02,   2.44000000e+02,
          2.45000000e+02,   3.01000000e+02,   2.56000000e+02,
          2.85000000e+02,   2.85000000e+02,   3.39000000e+02,
          3.25000000e+02,   3.76000000e+02],
       [  1.40000000e+01,   2.20000000e+01,   6.40000000e+01,
          6.40000000e+01,   9.90000000e+01,   1.02000000e+02,
          1.51000000e+02,   1.60000000e+02,   1.81000000e+02,
          1.83000000e+02,   2.35000000e+02,   2.16000000e+02,
          2.45000000e+02,   2.48000000e+02,   2.90000000e+02,
          2.76000000e+02,   2.97000000e+02,   3.32000000e+02,
          3.59000000e+02,   3.54000000e+02],
       [  1.00000000e+01,   3.80000000e+01,   4.90000000e+01,
          8.00000000e+01,   8.50000000e+01,   1.23000000e+02,
          1.23000000e+02,   1.56000000e+02,   1.61000000e+02,
          1.76000000e+02,   2.01000000e+02,   2.21000000e+02,
          2.35000000e+02,   2.61000000e+02,   2.89000000e+02,
          2.91000000e+02,   3.01000000e+02,   3.44000000e+02,
          3.46000000e+02,   3.58000000e+02],
       [  1.30000000e+01,   1.80000000e+01,   6.10000000e+01,
          6.70000000e+01,   9.30000000e+01,   1.26000000e+02,
          1.20000000e+02,   1.49000000e+02,   1.42000000e+02,
          1.76000000e+02,   2.06000000e+02,   2.07000000e+02,
          2.18000000e+02,   2.45000000e+02,   2.95000000e+02,
          2.97000000e+02,   3.16000000e+02,   3.41000000e+02,
          3.47000000e+02,   3.46000000e+02],
       [  1.20000000e+01,   2.80000000e+01,   5.50000000e+01,
          6.20000000e+01,   9.00000000e+01,   1.03000000e+02,
          1.27000000e+02,   1.48000000e+02,   1.90000000e+02,
          1.99000000e+02,   2.04000000e+02,   2.16000000e+02,
          2.58000000e+02,   2.38000000e+02,   2.79000000e+02,
          2.85000000e+02,   3.03000000e+02,   3.06000000e+02,
          3.37000000e+02,   3.45000000e+02],
       [  8.00000000e+00,   2.50000000e+01,   5.10000000e+01,
          6.20000000e+01,   1.00000000e+02,   1.13000000e+02,
          1.42000000e+02,   1.25000000e+02,   1.59000000e+02,
          1.84000000e+02,   1.88000000e+02,   1.99000000e+02,
          2.39000000e+02,   2.50000000e+02,   2.90000000e+02,
          2.82000000e+02,   2.84000000e+02,   3.12000000e+02,
          3.80000000e+02,   3.53000000e+02],
       [  1.10000000e+01,   2.60000000e+01,   5.10000000e+01,
          6.90000000e+01,   9.10000000e+01,   1.03000000e+02,
          1.21000000e+02,   1.50000000e+02,   1.55000000e+02,
          1.84000000e+02,   1.93000000e+02,   2.10000000e+02,
          2.25000000e+02,   2.53000000e+02,   2.75000000e+02,
          2.80000000e+02,   2.98000000e+02,   3.17000000e+02,
          3.16000000e+02,   3.64000000e+02],
       [  1.20000000e+01,   2.00000000e+01,   4.80000000e+01,
          6.80000000e+01,   7.80000000e+01,   9.20000000e+01,
          1.28000000e+02,   1.45000000e+02,   1.50000000e+02,
          1.82000000e+02,   1.98000000e+02,   2.23000000e+02,
          2.26000000e+02,   2.55000000e+02,   2.58000000e+02,
          2.51000000e+02,   2.81000000e+02,   2.59000000e+02,
          3.32000000e+02,   3.81000000e+02],
       [  7.00000000e+00,   4.00000000e+01,   5.30000000e+01,
          6.50000000e+01,   9.10000000e+01,   1.05000000e+02,
          1.25000000e+02,   1.39000000e+02,   1.77000000e+02,
          1.94000000e+02,   2.20000000e+02,   2.09000000e+02,
          2.14000000e+02,   2.30000000e+02,   2.88000000e+02,
          2.68000000e+02,   2.66000000e+02,   3.03000000e+02,
          3.12000000e+02,   2.99000000e+02],
       [  5.00000000e+00,   2.70000000e+01,   3.50000000e+01,
          6.60000000e+01,   7.70000000e+01,   1.02000000e+02,
          1.20000000e+02,   1.45000000e+02,   1.57000000e+02,
          1.75000000e+02,   1.83000000e+02,   2.18000000e+02,
          2.31000000e+02,   2.46000000e+02,   2.60000000e+02,
          2.54000000e+02,   2.97000000e+02,   2.96000000e+02,
          3.31000000e+02,   3.52000000e+02],
       [  1.00000000e+01,   2.00000000e+01,   3.90000000e+01,
          6.60000000e+01,   8.60000000e+01,   1.18000000e+02,
          1.04000000e+02,   1.30000000e+02,   1.70000000e+02,
          1.85000000e+02,   2.11000000e+02,   2.19000000e+02,
          2.10000000e+02,   2.61000000e+02,   2.52000000e+02,
          2.43000000e+02,   2.94000000e+02,   3.13000000e+02,
          3.30000000e+02,   3.39000000e+02]])

In [ ]:


In [13]:
# Getting back the objects:
with open('../output/DR12Qbin2.pkl') as f:  # Python 3: open(..., 'rb')
    dat = pickle.load(f)
dat


Out[13]:
array([[  1.61884600e+00,   7.10000000e-05,   8.42960000e-02],
       [  1.57613400e+00,   1.49000000e-04,   6.05257000e-01],
       [  1.71010300e+00,   1.57000000e-04,   2.66244000e-01],
       ..., 
       [  1.62190900e+00,   6.28264600e+00,  -7.35650000e-02],
       [  1.56940900e+00,   6.28270300e+00,  -7.70830000e-02],
       [  1.84922100e+00,   6.28282000e+00,   3.38480000e-02]])

In [14]:
dd2d=np.zeros((20,20))

In [15]:
len(dat)


Out[15]:
42650

In [16]:
dd2d


Out[16]:
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.]])

In [17]:
%%time
dist0=d.cdist([dat[0],],dat,APdz)[0]
dist1=d.cdist([dat[0],],dat,APzdth)[0]
print np.histogram2d(dist0, dist1, bins=20, range=rng)[0]


[[ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]]
CPU times: user 415 ms, sys: 8.54 ms, total: 424 ms
Wall time: 489 ms

In [18]:
%%time
while(len(dat))>0:
    dist0=d.cdist([dat[0],],dat,APdz)[0]
    dist1=d.cdist([dat[0],],dat,APzdth)[0]
    dd2d+=np.histogram2d(dist0, dist1, bins=20, range=rng)[0]
    dat=np.delete(dat,0,axis=0)
    if len(dat)%1000==0:
        print len(dat)/1000 
print dd2d


42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
[[  4.03410000e+04   1.70000000e+01   3.70000000e+01   5.30000000e+01
    4.60000000e+01   5.70000000e+01   5.60000000e+01   6.40000000e+01
    6.40000000e+01   6.40000000e+01   7.80000000e+01   7.60000000e+01
    9.30000000e+01   7.50000000e+01   9.30000000e+01   1.04000000e+02
    1.08000000e+02   1.05000000e+02   1.12000000e+02   1.22000000e+02]
 [  7.00000000e+00   3.00000000e+01   3.90000000e+01   3.40000000e+01
    5.00000000e+01   3.80000000e+01   4.80000000e+01   6.20000000e+01
    7.40000000e+01   7.10000000e+01   7.20000000e+01   6.90000000e+01
    8.30000000e+01   1.03000000e+02   8.40000000e+01   7.70000000e+01
    1.01000000e+02   1.18000000e+02   1.01000000e+02   1.28000000e+02]
 [  1.80000000e+01   3.20000000e+01   2.70000000e+01   4.10000000e+01
    3.00000000e+01   5.50000000e+01   4.50000000e+01   5.70000000e+01
    6.20000000e+01   5.90000000e+01   7.60000000e+01   7.90000000e+01
    8.00000000e+01   7.90000000e+01   9.60000000e+01   8.70000000e+01
    1.02000000e+02   1.13000000e+02   8.80000000e+01   1.12000000e+02]
 [  9.00000000e+00   2.00000000e+01   2.40000000e+01   4.00000000e+01
    4.60000000e+01   4.60000000e+01   5.00000000e+01   5.10000000e+01
    6.90000000e+01   8.10000000e+01   7.80000000e+01   8.90000000e+01
    7.60000000e+01   8.00000000e+01   9.50000000e+01   1.09000000e+02
    8.30000000e+01   1.28000000e+02   1.31000000e+02   1.24000000e+02]
 [  1.10000000e+01   2.10000000e+01   3.30000000e+01   4.50000000e+01
    3.80000000e+01   4.10000000e+01   5.20000000e+01   5.00000000e+01
    6.50000000e+01   7.70000000e+01   6.40000000e+01   8.70000000e+01
    9.50000000e+01   8.60000000e+01   8.70000000e+01   8.10000000e+01
    8.30000000e+01   1.15000000e+02   1.13000000e+02   1.19000000e+02]
 [  5.00000000e+00   1.90000000e+01   3.30000000e+01   3.40000000e+01
    6.10000000e+01   4.70000000e+01   5.00000000e+01   6.20000000e+01
    5.70000000e+01   6.50000000e+01   7.20000000e+01   8.10000000e+01
    6.80000000e+01   9.10000000e+01   9.00000000e+01   9.90000000e+01
    8.90000000e+01   1.15000000e+02   9.00000000e+01   1.23000000e+02]
 [  9.00000000e+00   1.90000000e+01   2.80000000e+01   2.80000000e+01
    3.30000000e+01   4.30000000e+01   5.30000000e+01   6.80000000e+01
    6.90000000e+01   6.50000000e+01   7.40000000e+01   8.50000000e+01
    8.00000000e+01   9.00000000e+01   8.20000000e+01   1.06000000e+02
    9.40000000e+01   1.19000000e+02   1.18000000e+02   1.18000000e+02]
 [  1.40000000e+01   2.20000000e+01   2.10000000e+01   3.50000000e+01
    4.30000000e+01   4.10000000e+01   5.30000000e+01   5.30000000e+01
    5.20000000e+01   5.90000000e+01   7.20000000e+01   9.20000000e+01
    8.70000000e+01   1.07000000e+02   1.01000000e+02   9.30000000e+01
    9.70000000e+01   8.60000000e+01   1.17000000e+02   1.29000000e+02]
 [  8.00000000e+00   1.30000000e+01   2.50000000e+01   2.90000000e+01
    3.40000000e+01   5.20000000e+01   5.20000000e+01   6.00000000e+01
    5.90000000e+01   7.10000000e+01   7.00000000e+01   6.60000000e+01
    8.30000000e+01   9.10000000e+01   8.40000000e+01   8.80000000e+01
    8.70000000e+01   1.17000000e+02   1.22000000e+02   9.10000000e+01]
 [  1.30000000e+01   1.60000000e+01   1.90000000e+01   4.80000000e+01
    2.90000000e+01   3.90000000e+01   4.80000000e+01   5.70000000e+01
    6.40000000e+01   4.60000000e+01   6.60000000e+01   7.80000000e+01
    8.90000000e+01   9.50000000e+01   9.20000000e+01   7.80000000e+01
    8.20000000e+01   1.08000000e+02   8.80000000e+01   1.15000000e+02]
 [  4.00000000e+00   2.50000000e+01   3.20000000e+01   2.10000000e+01
    3.80000000e+01   5.70000000e+01   4.80000000e+01   5.20000000e+01
    6.50000000e+01   5.90000000e+01   6.20000000e+01   8.70000000e+01
    8.90000000e+01   7.80000000e+01   1.08000000e+02   8.70000000e+01
    9.70000000e+01   9.40000000e+01   1.19000000e+02   1.20000000e+02]
 [  8.00000000e+00   9.00000000e+00   2.30000000e+01   3.10000000e+01
    4.20000000e+01   4.70000000e+01   5.50000000e+01   5.60000000e+01
    7.70000000e+01   7.50000000e+01   6.80000000e+01   6.70000000e+01
    7.90000000e+01   9.60000000e+01   6.40000000e+01   9.20000000e+01
    9.20000000e+01   1.00000000e+02   9.30000000e+01   1.15000000e+02]
 [  5.00000000e+00   1.10000000e+01   3.10000000e+01   2.50000000e+01
    3.40000000e+01   4.60000000e+01   4.30000000e+01   7.00000000e+01
    6.20000000e+01   6.20000000e+01   6.30000000e+01   6.30000000e+01
    8.30000000e+01   8.30000000e+01   8.70000000e+01   8.10000000e+01
    8.50000000e+01   1.11000000e+02   1.05000000e+02   1.15000000e+02]
 [  3.00000000e+00   1.00000000e+01   1.60000000e+01   2.80000000e+01
    3.10000000e+01   4.50000000e+01   4.80000000e+01   4.80000000e+01
    4.80000000e+01   5.30000000e+01   7.90000000e+01   7.40000000e+01
    8.40000000e+01   9.20000000e+01   8.80000000e+01   8.70000000e+01
    8.70000000e+01   1.05000000e+02   1.19000000e+02   1.11000000e+02]
 [  8.00000000e+00   1.60000000e+01   2.70000000e+01   3.50000000e+01
    3.60000000e+01   2.30000000e+01   4.10000000e+01   6.30000000e+01
    4.50000000e+01   5.40000000e+01   7.10000000e+01   7.60000000e+01
    7.40000000e+01   8.70000000e+01   9.40000000e+01   9.40000000e+01
    1.00000000e+02   1.02000000e+02   1.19000000e+02   8.90000000e+01]
 [  4.00000000e+00   7.00000000e+00   2.00000000e+01   2.60000000e+01
    3.30000000e+01   3.00000000e+01   4.00000000e+01   4.00000000e+01
    5.10000000e+01   4.20000000e+01   7.60000000e+01   7.10000000e+01
    8.10000000e+01   8.40000000e+01   8.90000000e+01   8.60000000e+01
    9.60000000e+01   9.20000000e+01   8.80000000e+01   1.22000000e+02]
 [  3.00000000e+00   1.00000000e+01   1.40000000e+01   2.40000000e+01
    2.80000000e+01   5.10000000e+01   4.50000000e+01   2.90000000e+01
    4.10000000e+01   5.70000000e+01   6.50000000e+01   7.60000000e+01
    6.90000000e+01   8.80000000e+01   7.10000000e+01   9.70000000e+01
    9.30000000e+01   1.00000000e+02   1.07000000e+02   1.15000000e+02]
 [  3.00000000e+00   1.30000000e+01   2.40000000e+01   2.80000000e+01
    4.60000000e+01   3.00000000e+01   4.00000000e+01   4.80000000e+01
    6.70000000e+01   5.80000000e+01   6.80000000e+01   7.40000000e+01
    6.20000000e+01   8.60000000e+01   8.70000000e+01   9.30000000e+01
    8.60000000e+01   1.00000000e+02   1.02000000e+02   1.14000000e+02]
 [  2.00000000e+00   1.70000000e+01   1.80000000e+01   2.70000000e+01
    2.80000000e+01   3.30000000e+01   4.30000000e+01   4.60000000e+01
    5.00000000e+01   6.10000000e+01   6.20000000e+01   6.90000000e+01
    8.50000000e+01   9.30000000e+01   9.40000000e+01   8.00000000e+01
    9.50000000e+01   1.12000000e+02   1.21000000e+02   9.90000000e+01]
 [  8.00000000e+00   1.60000000e+01   2.30000000e+01   2.00000000e+01
    3.40000000e+01   3.70000000e+01   3.20000000e+01   4.60000000e+01
    5.40000000e+01   5.20000000e+01   6.70000000e+01   7.20000000e+01
    8.10000000e+01   8.50000000e+01   9.00000000e+01   8.90000000e+01
    9.70000000e+01   9.70000000e+01   1.04000000e+02   1.18000000e+02]]
CPU times: user 2h 51min 49s, sys: 1min 33s, total: 2h 53min 23s
Wall time: 2h 53min 2s

In [19]:
dd2d


Out[19]:
array([[  4.03410000e+04,   1.70000000e+01,   3.70000000e+01,
          5.30000000e+01,   4.60000000e+01,   5.70000000e+01,
          5.60000000e+01,   6.40000000e+01,   6.40000000e+01,
          6.40000000e+01,   7.80000000e+01,   7.60000000e+01,
          9.30000000e+01,   7.50000000e+01,   9.30000000e+01,
          1.04000000e+02,   1.08000000e+02,   1.05000000e+02,
          1.12000000e+02,   1.22000000e+02],
       [  7.00000000e+00,   3.00000000e+01,   3.90000000e+01,
          3.40000000e+01,   5.00000000e+01,   3.80000000e+01,
          4.80000000e+01,   6.20000000e+01,   7.40000000e+01,
          7.10000000e+01,   7.20000000e+01,   6.90000000e+01,
          8.30000000e+01,   1.03000000e+02,   8.40000000e+01,
          7.70000000e+01,   1.01000000e+02,   1.18000000e+02,
          1.01000000e+02,   1.28000000e+02],
       [  1.80000000e+01,   3.20000000e+01,   2.70000000e+01,
          4.10000000e+01,   3.00000000e+01,   5.50000000e+01,
          4.50000000e+01,   5.70000000e+01,   6.20000000e+01,
          5.90000000e+01,   7.60000000e+01,   7.90000000e+01,
          8.00000000e+01,   7.90000000e+01,   9.60000000e+01,
          8.70000000e+01,   1.02000000e+02,   1.13000000e+02,
          8.80000000e+01,   1.12000000e+02],
       [  9.00000000e+00,   2.00000000e+01,   2.40000000e+01,
          4.00000000e+01,   4.60000000e+01,   4.60000000e+01,
          5.00000000e+01,   5.10000000e+01,   6.90000000e+01,
          8.10000000e+01,   7.80000000e+01,   8.90000000e+01,
          7.60000000e+01,   8.00000000e+01,   9.50000000e+01,
          1.09000000e+02,   8.30000000e+01,   1.28000000e+02,
          1.31000000e+02,   1.24000000e+02],
       [  1.10000000e+01,   2.10000000e+01,   3.30000000e+01,
          4.50000000e+01,   3.80000000e+01,   4.10000000e+01,
          5.20000000e+01,   5.00000000e+01,   6.50000000e+01,
          7.70000000e+01,   6.40000000e+01,   8.70000000e+01,
          9.50000000e+01,   8.60000000e+01,   8.70000000e+01,
          8.10000000e+01,   8.30000000e+01,   1.15000000e+02,
          1.13000000e+02,   1.19000000e+02],
       [  5.00000000e+00,   1.90000000e+01,   3.30000000e+01,
          3.40000000e+01,   6.10000000e+01,   4.70000000e+01,
          5.00000000e+01,   6.20000000e+01,   5.70000000e+01,
          6.50000000e+01,   7.20000000e+01,   8.10000000e+01,
          6.80000000e+01,   9.10000000e+01,   9.00000000e+01,
          9.90000000e+01,   8.90000000e+01,   1.15000000e+02,
          9.00000000e+01,   1.23000000e+02],
       [  9.00000000e+00,   1.90000000e+01,   2.80000000e+01,
          2.80000000e+01,   3.30000000e+01,   4.30000000e+01,
          5.30000000e+01,   6.80000000e+01,   6.90000000e+01,
          6.50000000e+01,   7.40000000e+01,   8.50000000e+01,
          8.00000000e+01,   9.00000000e+01,   8.20000000e+01,
          1.06000000e+02,   9.40000000e+01,   1.19000000e+02,
          1.18000000e+02,   1.18000000e+02],
       [  1.40000000e+01,   2.20000000e+01,   2.10000000e+01,
          3.50000000e+01,   4.30000000e+01,   4.10000000e+01,
          5.30000000e+01,   5.30000000e+01,   5.20000000e+01,
          5.90000000e+01,   7.20000000e+01,   9.20000000e+01,
          8.70000000e+01,   1.07000000e+02,   1.01000000e+02,
          9.30000000e+01,   9.70000000e+01,   8.60000000e+01,
          1.17000000e+02,   1.29000000e+02],
       [  8.00000000e+00,   1.30000000e+01,   2.50000000e+01,
          2.90000000e+01,   3.40000000e+01,   5.20000000e+01,
          5.20000000e+01,   6.00000000e+01,   5.90000000e+01,
          7.10000000e+01,   7.00000000e+01,   6.60000000e+01,
          8.30000000e+01,   9.10000000e+01,   8.40000000e+01,
          8.80000000e+01,   8.70000000e+01,   1.17000000e+02,
          1.22000000e+02,   9.10000000e+01],
       [  1.30000000e+01,   1.60000000e+01,   1.90000000e+01,
          4.80000000e+01,   2.90000000e+01,   3.90000000e+01,
          4.80000000e+01,   5.70000000e+01,   6.40000000e+01,
          4.60000000e+01,   6.60000000e+01,   7.80000000e+01,
          8.90000000e+01,   9.50000000e+01,   9.20000000e+01,
          7.80000000e+01,   8.20000000e+01,   1.08000000e+02,
          8.80000000e+01,   1.15000000e+02],
       [  4.00000000e+00,   2.50000000e+01,   3.20000000e+01,
          2.10000000e+01,   3.80000000e+01,   5.70000000e+01,
          4.80000000e+01,   5.20000000e+01,   6.50000000e+01,
          5.90000000e+01,   6.20000000e+01,   8.70000000e+01,
          8.90000000e+01,   7.80000000e+01,   1.08000000e+02,
          8.70000000e+01,   9.70000000e+01,   9.40000000e+01,
          1.19000000e+02,   1.20000000e+02],
       [  8.00000000e+00,   9.00000000e+00,   2.30000000e+01,
          3.10000000e+01,   4.20000000e+01,   4.70000000e+01,
          5.50000000e+01,   5.60000000e+01,   7.70000000e+01,
          7.50000000e+01,   6.80000000e+01,   6.70000000e+01,
          7.90000000e+01,   9.60000000e+01,   6.40000000e+01,
          9.20000000e+01,   9.20000000e+01,   1.00000000e+02,
          9.30000000e+01,   1.15000000e+02],
       [  5.00000000e+00,   1.10000000e+01,   3.10000000e+01,
          2.50000000e+01,   3.40000000e+01,   4.60000000e+01,
          4.30000000e+01,   7.00000000e+01,   6.20000000e+01,
          6.20000000e+01,   6.30000000e+01,   6.30000000e+01,
          8.30000000e+01,   8.30000000e+01,   8.70000000e+01,
          8.10000000e+01,   8.50000000e+01,   1.11000000e+02,
          1.05000000e+02,   1.15000000e+02],
       [  3.00000000e+00,   1.00000000e+01,   1.60000000e+01,
          2.80000000e+01,   3.10000000e+01,   4.50000000e+01,
          4.80000000e+01,   4.80000000e+01,   4.80000000e+01,
          5.30000000e+01,   7.90000000e+01,   7.40000000e+01,
          8.40000000e+01,   9.20000000e+01,   8.80000000e+01,
          8.70000000e+01,   8.70000000e+01,   1.05000000e+02,
          1.19000000e+02,   1.11000000e+02],
       [  8.00000000e+00,   1.60000000e+01,   2.70000000e+01,
          3.50000000e+01,   3.60000000e+01,   2.30000000e+01,
          4.10000000e+01,   6.30000000e+01,   4.50000000e+01,
          5.40000000e+01,   7.10000000e+01,   7.60000000e+01,
          7.40000000e+01,   8.70000000e+01,   9.40000000e+01,
          9.40000000e+01,   1.00000000e+02,   1.02000000e+02,
          1.19000000e+02,   8.90000000e+01],
       [  4.00000000e+00,   7.00000000e+00,   2.00000000e+01,
          2.60000000e+01,   3.30000000e+01,   3.00000000e+01,
          4.00000000e+01,   4.00000000e+01,   5.10000000e+01,
          4.20000000e+01,   7.60000000e+01,   7.10000000e+01,
          8.10000000e+01,   8.40000000e+01,   8.90000000e+01,
          8.60000000e+01,   9.60000000e+01,   9.20000000e+01,
          8.80000000e+01,   1.22000000e+02],
       [  3.00000000e+00,   1.00000000e+01,   1.40000000e+01,
          2.40000000e+01,   2.80000000e+01,   5.10000000e+01,
          4.50000000e+01,   2.90000000e+01,   4.10000000e+01,
          5.70000000e+01,   6.50000000e+01,   7.60000000e+01,
          6.90000000e+01,   8.80000000e+01,   7.10000000e+01,
          9.70000000e+01,   9.30000000e+01,   1.00000000e+02,
          1.07000000e+02,   1.15000000e+02],
       [  3.00000000e+00,   1.30000000e+01,   2.40000000e+01,
          2.80000000e+01,   4.60000000e+01,   3.00000000e+01,
          4.00000000e+01,   4.80000000e+01,   6.70000000e+01,
          5.80000000e+01,   6.80000000e+01,   7.40000000e+01,
          6.20000000e+01,   8.60000000e+01,   8.70000000e+01,
          9.30000000e+01,   8.60000000e+01,   1.00000000e+02,
          1.02000000e+02,   1.14000000e+02],
       [  2.00000000e+00,   1.70000000e+01,   1.80000000e+01,
          2.70000000e+01,   2.80000000e+01,   3.30000000e+01,
          4.30000000e+01,   4.60000000e+01,   5.00000000e+01,
          6.10000000e+01,   6.20000000e+01,   6.90000000e+01,
          8.50000000e+01,   9.30000000e+01,   9.40000000e+01,
          8.00000000e+01,   9.50000000e+01,   1.12000000e+02,
          1.21000000e+02,   9.90000000e+01],
       [  8.00000000e+00,   1.60000000e+01,   2.30000000e+01,
          2.00000000e+01,   3.40000000e+01,   3.70000000e+01,
          3.20000000e+01,   4.60000000e+01,   5.40000000e+01,
          5.20000000e+01,   6.70000000e+01,   7.20000000e+01,
          8.10000000e+01,   8.50000000e+01,   9.00000000e+01,
          8.90000000e+01,   9.70000000e+01,   9.70000000e+01,
          1.04000000e+02,   1.18000000e+02]])

In [20]:
with open('DR12QDDbin2.pkl','w') as f:
    pickle.dump(dd2d,f)    
dd2d


Out[20]:
array([[  4.03410000e+04,   1.70000000e+01,   3.70000000e+01,
          5.30000000e+01,   4.60000000e+01,   5.70000000e+01,
          5.60000000e+01,   6.40000000e+01,   6.40000000e+01,
          6.40000000e+01,   7.80000000e+01,   7.60000000e+01,
          9.30000000e+01,   7.50000000e+01,   9.30000000e+01,
          1.04000000e+02,   1.08000000e+02,   1.05000000e+02,
          1.12000000e+02,   1.22000000e+02],
       [  7.00000000e+00,   3.00000000e+01,   3.90000000e+01,
          3.40000000e+01,   5.00000000e+01,   3.80000000e+01,
          4.80000000e+01,   6.20000000e+01,   7.40000000e+01,
          7.10000000e+01,   7.20000000e+01,   6.90000000e+01,
          8.30000000e+01,   1.03000000e+02,   8.40000000e+01,
          7.70000000e+01,   1.01000000e+02,   1.18000000e+02,
          1.01000000e+02,   1.28000000e+02],
       [  1.80000000e+01,   3.20000000e+01,   2.70000000e+01,
          4.10000000e+01,   3.00000000e+01,   5.50000000e+01,
          4.50000000e+01,   5.70000000e+01,   6.20000000e+01,
          5.90000000e+01,   7.60000000e+01,   7.90000000e+01,
          8.00000000e+01,   7.90000000e+01,   9.60000000e+01,
          8.70000000e+01,   1.02000000e+02,   1.13000000e+02,
          8.80000000e+01,   1.12000000e+02],
       [  9.00000000e+00,   2.00000000e+01,   2.40000000e+01,
          4.00000000e+01,   4.60000000e+01,   4.60000000e+01,
          5.00000000e+01,   5.10000000e+01,   6.90000000e+01,
          8.10000000e+01,   7.80000000e+01,   8.90000000e+01,
          7.60000000e+01,   8.00000000e+01,   9.50000000e+01,
          1.09000000e+02,   8.30000000e+01,   1.28000000e+02,
          1.31000000e+02,   1.24000000e+02],
       [  1.10000000e+01,   2.10000000e+01,   3.30000000e+01,
          4.50000000e+01,   3.80000000e+01,   4.10000000e+01,
          5.20000000e+01,   5.00000000e+01,   6.50000000e+01,
          7.70000000e+01,   6.40000000e+01,   8.70000000e+01,
          9.50000000e+01,   8.60000000e+01,   8.70000000e+01,
          8.10000000e+01,   8.30000000e+01,   1.15000000e+02,
          1.13000000e+02,   1.19000000e+02],
       [  5.00000000e+00,   1.90000000e+01,   3.30000000e+01,
          3.40000000e+01,   6.10000000e+01,   4.70000000e+01,
          5.00000000e+01,   6.20000000e+01,   5.70000000e+01,
          6.50000000e+01,   7.20000000e+01,   8.10000000e+01,
          6.80000000e+01,   9.10000000e+01,   9.00000000e+01,
          9.90000000e+01,   8.90000000e+01,   1.15000000e+02,
          9.00000000e+01,   1.23000000e+02],
       [  9.00000000e+00,   1.90000000e+01,   2.80000000e+01,
          2.80000000e+01,   3.30000000e+01,   4.30000000e+01,
          5.30000000e+01,   6.80000000e+01,   6.90000000e+01,
          6.50000000e+01,   7.40000000e+01,   8.50000000e+01,
          8.00000000e+01,   9.00000000e+01,   8.20000000e+01,
          1.06000000e+02,   9.40000000e+01,   1.19000000e+02,
          1.18000000e+02,   1.18000000e+02],
       [  1.40000000e+01,   2.20000000e+01,   2.10000000e+01,
          3.50000000e+01,   4.30000000e+01,   4.10000000e+01,
          5.30000000e+01,   5.30000000e+01,   5.20000000e+01,
          5.90000000e+01,   7.20000000e+01,   9.20000000e+01,
          8.70000000e+01,   1.07000000e+02,   1.01000000e+02,
          9.30000000e+01,   9.70000000e+01,   8.60000000e+01,
          1.17000000e+02,   1.29000000e+02],
       [  8.00000000e+00,   1.30000000e+01,   2.50000000e+01,
          2.90000000e+01,   3.40000000e+01,   5.20000000e+01,
          5.20000000e+01,   6.00000000e+01,   5.90000000e+01,
          7.10000000e+01,   7.00000000e+01,   6.60000000e+01,
          8.30000000e+01,   9.10000000e+01,   8.40000000e+01,
          8.80000000e+01,   8.70000000e+01,   1.17000000e+02,
          1.22000000e+02,   9.10000000e+01],
       [  1.30000000e+01,   1.60000000e+01,   1.90000000e+01,
          4.80000000e+01,   2.90000000e+01,   3.90000000e+01,
          4.80000000e+01,   5.70000000e+01,   6.40000000e+01,
          4.60000000e+01,   6.60000000e+01,   7.80000000e+01,
          8.90000000e+01,   9.50000000e+01,   9.20000000e+01,
          7.80000000e+01,   8.20000000e+01,   1.08000000e+02,
          8.80000000e+01,   1.15000000e+02],
       [  4.00000000e+00,   2.50000000e+01,   3.20000000e+01,
          2.10000000e+01,   3.80000000e+01,   5.70000000e+01,
          4.80000000e+01,   5.20000000e+01,   6.50000000e+01,
          5.90000000e+01,   6.20000000e+01,   8.70000000e+01,
          8.90000000e+01,   7.80000000e+01,   1.08000000e+02,
          8.70000000e+01,   9.70000000e+01,   9.40000000e+01,
          1.19000000e+02,   1.20000000e+02],
       [  8.00000000e+00,   9.00000000e+00,   2.30000000e+01,
          3.10000000e+01,   4.20000000e+01,   4.70000000e+01,
          5.50000000e+01,   5.60000000e+01,   7.70000000e+01,
          7.50000000e+01,   6.80000000e+01,   6.70000000e+01,
          7.90000000e+01,   9.60000000e+01,   6.40000000e+01,
          9.20000000e+01,   9.20000000e+01,   1.00000000e+02,
          9.30000000e+01,   1.15000000e+02],
       [  5.00000000e+00,   1.10000000e+01,   3.10000000e+01,
          2.50000000e+01,   3.40000000e+01,   4.60000000e+01,
          4.30000000e+01,   7.00000000e+01,   6.20000000e+01,
          6.20000000e+01,   6.30000000e+01,   6.30000000e+01,
          8.30000000e+01,   8.30000000e+01,   8.70000000e+01,
          8.10000000e+01,   8.50000000e+01,   1.11000000e+02,
          1.05000000e+02,   1.15000000e+02],
       [  3.00000000e+00,   1.00000000e+01,   1.60000000e+01,
          2.80000000e+01,   3.10000000e+01,   4.50000000e+01,
          4.80000000e+01,   4.80000000e+01,   4.80000000e+01,
          5.30000000e+01,   7.90000000e+01,   7.40000000e+01,
          8.40000000e+01,   9.20000000e+01,   8.80000000e+01,
          8.70000000e+01,   8.70000000e+01,   1.05000000e+02,
          1.19000000e+02,   1.11000000e+02],
       [  8.00000000e+00,   1.60000000e+01,   2.70000000e+01,
          3.50000000e+01,   3.60000000e+01,   2.30000000e+01,
          4.10000000e+01,   6.30000000e+01,   4.50000000e+01,
          5.40000000e+01,   7.10000000e+01,   7.60000000e+01,
          7.40000000e+01,   8.70000000e+01,   9.40000000e+01,
          9.40000000e+01,   1.00000000e+02,   1.02000000e+02,
          1.19000000e+02,   8.90000000e+01],
       [  4.00000000e+00,   7.00000000e+00,   2.00000000e+01,
          2.60000000e+01,   3.30000000e+01,   3.00000000e+01,
          4.00000000e+01,   4.00000000e+01,   5.10000000e+01,
          4.20000000e+01,   7.60000000e+01,   7.10000000e+01,
          8.10000000e+01,   8.40000000e+01,   8.90000000e+01,
          8.60000000e+01,   9.60000000e+01,   9.20000000e+01,
          8.80000000e+01,   1.22000000e+02],
       [  3.00000000e+00,   1.00000000e+01,   1.40000000e+01,
          2.40000000e+01,   2.80000000e+01,   5.10000000e+01,
          4.50000000e+01,   2.90000000e+01,   4.10000000e+01,
          5.70000000e+01,   6.50000000e+01,   7.60000000e+01,
          6.90000000e+01,   8.80000000e+01,   7.10000000e+01,
          9.70000000e+01,   9.30000000e+01,   1.00000000e+02,
          1.07000000e+02,   1.15000000e+02],
       [  3.00000000e+00,   1.30000000e+01,   2.40000000e+01,
          2.80000000e+01,   4.60000000e+01,   3.00000000e+01,
          4.00000000e+01,   4.80000000e+01,   6.70000000e+01,
          5.80000000e+01,   6.80000000e+01,   7.40000000e+01,
          6.20000000e+01,   8.60000000e+01,   8.70000000e+01,
          9.30000000e+01,   8.60000000e+01,   1.00000000e+02,
          1.02000000e+02,   1.14000000e+02],
       [  2.00000000e+00,   1.70000000e+01,   1.80000000e+01,
          2.70000000e+01,   2.80000000e+01,   3.30000000e+01,
          4.30000000e+01,   4.60000000e+01,   5.00000000e+01,
          6.10000000e+01,   6.20000000e+01,   6.90000000e+01,
          8.50000000e+01,   9.30000000e+01,   9.40000000e+01,
          8.00000000e+01,   9.50000000e+01,   1.12000000e+02,
          1.21000000e+02,   9.90000000e+01],
       [  8.00000000e+00,   1.60000000e+01,   2.30000000e+01,
          2.00000000e+01,   3.40000000e+01,   3.70000000e+01,
          3.20000000e+01,   4.60000000e+01,   5.40000000e+01,
          5.20000000e+01,   6.70000000e+01,   7.20000000e+01,
          8.10000000e+01,   8.50000000e+01,   9.00000000e+01,
          8.90000000e+01,   9.70000000e+01,   9.70000000e+01,
          1.04000000e+02,   1.18000000e+02]])

In [ ]:


In [21]:
# Getting back the objects:
with open('../output/DR12Qbin3.pkl') as f:  # Python 3: open(..., 'rb')
    dat = pickle.load(f)
dat


Out[21]:
array([[  2.30909700e+00,   3.30000000e-05,   3.10210000e-01],
       [  2.49794100e+00,   4.80000000e-05,   2.61357000e-01],
       [  2.33265500e+00,   1.00000000e-04,  -2.31260000e-02],
       ..., 
       [  2.41550800e+00,   6.28316600e+00,   1.76571000e-01],
       [  2.45101500e+00,   6.28317000e+00,   5.05355000e-01],
       [  2.39766700e+00,   6.28318400e+00,   6.06452000e-01]])

In [22]:
dd2d=np.zeros((20,20))

In [23]:
len(dat)


Out[23]:
139641

In [24]:
dd2d


Out[24]:
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.]])

In [25]:
%%time
dist0=d.cdist([dat[0],],dat,APdz)[0]
dist1=d.cdist([dat[0],],dat,APzdth)[0]
print np.histogram2d(dist0, dist1, bins=20, range=rng)[0]


[[ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]]
CPU times: user 1.65 s, sys: 26.1 ms, total: 1.68 s
Wall time: 1.68 s

In [26]:
%%time
while(len(dat))>0:
    dist0=d.cdist([dat[0],],dat,APdz)[0]
    dist1=d.cdist([dat[0],],dat,APzdth)[0]
    dd2d+=np.histogram2d(dist0, dist1, bins=20, range=rng)[0]
    dat=np.delete(dat,0,axis=0)
    if len(dat)%1000==0:
        print len(dat)/1000 
print dd2d


139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
[[  1.32956000e+05   5.40000000e+01   6.30000000e+01   8.40000000e+01
    8.20000000e+01   1.08000000e+02   1.04000000e+02   1.04000000e+02
    1.20000000e+02   1.65000000e+02   1.63000000e+02   1.58000000e+02
    1.78000000e+02   1.63000000e+02   1.58000000e+02   1.96000000e+02
    1.93000000e+02   2.31000000e+02   2.42000000e+02   2.71000000e+02]
 [  2.00000000e+01   6.00000000e+01   8.10000000e+01   7.10000000e+01
    1.07000000e+02   9.70000000e+01   9.40000000e+01   1.07000000e+02
    1.54000000e+02   1.51000000e+02   1.29000000e+02   1.75000000e+02
    1.57000000e+02   1.91000000e+02   1.85000000e+02   2.09000000e+02
    2.07000000e+02   2.22000000e+02   2.60000000e+02   2.59000000e+02]
 [  1.70000000e+01   5.80000000e+01   6.80000000e+01   8.10000000e+01
    9.80000000e+01   1.21000000e+02   8.90000000e+01   1.11000000e+02
    1.42000000e+02   1.24000000e+02   1.54000000e+02   1.46000000e+02
    1.93000000e+02   2.01000000e+02   1.79000000e+02   2.01000000e+02
    2.11000000e+02   2.23000000e+02   2.36000000e+02   2.65000000e+02]
 [  2.40000000e+01   5.90000000e+01   6.90000000e+01   7.40000000e+01
    7.90000000e+01   1.06000000e+02   1.07000000e+02   1.16000000e+02
    1.25000000e+02   1.33000000e+02   1.60000000e+02   1.76000000e+02
    1.75000000e+02   1.37000000e+02   1.79000000e+02   1.88000000e+02
    2.04000000e+02   2.29000000e+02   2.46000000e+02   2.59000000e+02]
 [  1.60000000e+01   5.40000000e+01   6.00000000e+01   8.10000000e+01
    8.60000000e+01   8.10000000e+01   1.01000000e+02   1.30000000e+02
    1.15000000e+02   1.48000000e+02   1.58000000e+02   1.58000000e+02
    1.63000000e+02   1.81000000e+02   1.85000000e+02   2.09000000e+02
    2.06000000e+02   2.24000000e+02   2.14000000e+02   2.57000000e+02]
 [  2.70000000e+01   5.00000000e+01   6.30000000e+01   8.00000000e+01
    7.90000000e+01   9.70000000e+01   1.11000000e+02   1.35000000e+02
    1.26000000e+02   1.58000000e+02   1.46000000e+02   1.79000000e+02
    1.69000000e+02   1.86000000e+02   1.78000000e+02   2.01000000e+02
    2.22000000e+02   2.56000000e+02   2.29000000e+02   2.36000000e+02]
 [  2.20000000e+01   5.70000000e+01   7.50000000e+01   7.60000000e+01
    1.00000000e+02   9.30000000e+01   1.05000000e+02   9.50000000e+01
    1.14000000e+02   1.36000000e+02   1.42000000e+02   1.56000000e+02
    1.65000000e+02   2.02000000e+02   1.63000000e+02   1.98000000e+02
    2.25000000e+02   2.29000000e+02   2.16000000e+02   2.67000000e+02]
 [  1.80000000e+01   3.40000000e+01   6.20000000e+01   8.10000000e+01
    9.40000000e+01   8.90000000e+01   1.13000000e+02   1.26000000e+02
    1.22000000e+02   1.47000000e+02   1.45000000e+02   1.52000000e+02
    1.65000000e+02   1.88000000e+02   1.94000000e+02   1.94000000e+02
    2.17000000e+02   2.17000000e+02   2.12000000e+02   2.44000000e+02]
 [  1.40000000e+01   5.30000000e+01   5.60000000e+01   6.00000000e+01
    7.50000000e+01   9.40000000e+01   9.40000000e+01   1.04000000e+02
    1.24000000e+02   1.48000000e+02   1.58000000e+02   1.75000000e+02
    1.68000000e+02   1.75000000e+02   1.89000000e+02   2.26000000e+02
    2.09000000e+02   2.61000000e+02   2.15000000e+02   2.64000000e+02]
 [  2.10000000e+01   3.80000000e+01   6.00000000e+01   7.70000000e+01
    7.50000000e+01   8.30000000e+01   1.19000000e+02   1.10000000e+02
    1.14000000e+02   1.39000000e+02   1.53000000e+02   1.65000000e+02
    1.59000000e+02   1.81000000e+02   1.98000000e+02   2.28000000e+02
    2.09000000e+02   2.12000000e+02   2.38000000e+02   2.34000000e+02]
 [  2.10000000e+01   2.70000000e+01   7.00000000e+01   7.20000000e+01
    8.60000000e+01   8.10000000e+01   1.09000000e+02   1.08000000e+02
    1.19000000e+02   1.69000000e+02   1.59000000e+02   1.57000000e+02
    1.63000000e+02   1.84000000e+02   2.00000000e+02   1.91000000e+02
    2.08000000e+02   2.03000000e+02   2.17000000e+02   2.32000000e+02]
 [  1.80000000e+01   4.80000000e+01   4.50000000e+01   6.50000000e+01
    8.70000000e+01   9.00000000e+01   1.14000000e+02   1.11000000e+02
    1.34000000e+02   1.19000000e+02   1.43000000e+02   1.54000000e+02
    1.76000000e+02   1.64000000e+02   1.88000000e+02   2.13000000e+02
    1.99000000e+02   2.14000000e+02   2.49000000e+02   2.46000000e+02]
 [  1.00000000e+01   4.80000000e+01   4.80000000e+01   7.20000000e+01
    8.10000000e+01   1.06000000e+02   1.14000000e+02   1.05000000e+02
    1.32000000e+02   1.30000000e+02   1.61000000e+02   1.61000000e+02
    1.87000000e+02   1.77000000e+02   1.91000000e+02   2.19000000e+02
    2.10000000e+02   2.34000000e+02   2.15000000e+02   2.21000000e+02]
 [  1.40000000e+01   3.50000000e+01   4.50000000e+01   6.30000000e+01
    7.70000000e+01   8.90000000e+01   9.10000000e+01   8.80000000e+01
    1.23000000e+02   1.48000000e+02   1.56000000e+02   1.51000000e+02
    1.54000000e+02   1.77000000e+02   1.88000000e+02   2.09000000e+02
    1.87000000e+02   2.13000000e+02   2.28000000e+02   2.24000000e+02]
 [  1.30000000e+01   4.00000000e+01   5.30000000e+01   6.40000000e+01
    7.50000000e+01   8.80000000e+01   1.04000000e+02   1.31000000e+02
    1.16000000e+02   1.43000000e+02   1.39000000e+02   1.48000000e+02
    1.78000000e+02   1.69000000e+02   1.88000000e+02   1.84000000e+02
    2.02000000e+02   2.18000000e+02   2.21000000e+02   2.04000000e+02]
 [  1.30000000e+01   2.90000000e+01   5.10000000e+01   5.30000000e+01
    6.10000000e+01   8.70000000e+01   1.07000000e+02   1.18000000e+02
    1.20000000e+02   1.21000000e+02   1.39000000e+02   1.30000000e+02
    1.71000000e+02   1.57000000e+02   1.86000000e+02   1.87000000e+02
    2.06000000e+02   2.12000000e+02   1.96000000e+02   2.44000000e+02]
 [  1.00000000e+01   3.70000000e+01   5.10000000e+01   6.80000000e+01
    8.80000000e+01   7.30000000e+01   6.90000000e+01   1.02000000e+02
    1.09000000e+02   1.25000000e+02   1.32000000e+02   1.47000000e+02
    1.93000000e+02   1.91000000e+02   1.72000000e+02   1.88000000e+02
    1.96000000e+02   2.39000000e+02   2.39000000e+02   2.42000000e+02]
 [  1.50000000e+01   2.50000000e+01   5.20000000e+01   5.90000000e+01
    7.30000000e+01   6.90000000e+01   8.30000000e+01   9.80000000e+01
    1.03000000e+02   1.37000000e+02   1.78000000e+02   1.51000000e+02
    1.73000000e+02   1.65000000e+02   1.88000000e+02   2.03000000e+02
    1.97000000e+02   2.07000000e+02   2.31000000e+02   2.41000000e+02]
 [  1.60000000e+01   2.60000000e+01   5.40000000e+01   4.70000000e+01
    6.00000000e+01   7.30000000e+01   1.06000000e+02   1.05000000e+02
    1.14000000e+02   1.27000000e+02   1.45000000e+02   1.49000000e+02
    1.59000000e+02   1.94000000e+02   1.68000000e+02   2.08000000e+02
    2.32000000e+02   2.26000000e+02   2.04000000e+02   2.33000000e+02]
 [  3.00000000e+00   2.90000000e+01   4.20000000e+01   6.20000000e+01
    6.50000000e+01   7.40000000e+01   9.00000000e+01   8.30000000e+01
    1.28000000e+02   1.19000000e+02   1.50000000e+02   1.18000000e+02
    1.71000000e+02   1.75000000e+02   1.76000000e+02   1.60000000e+02
    2.24000000e+02   2.46000000e+02   2.28000000e+02   2.19000000e+02]]
CPU times: user 1d 3h 17min 46s, sys: 29min 13s, total: 1d 3h 46min 59s
Wall time: 1d 11h 1min 34s

In [27]:
dd2d


Out[27]:
array([[  1.32956000e+05,   5.40000000e+01,   6.30000000e+01,
          8.40000000e+01,   8.20000000e+01,   1.08000000e+02,
          1.04000000e+02,   1.04000000e+02,   1.20000000e+02,
          1.65000000e+02,   1.63000000e+02,   1.58000000e+02,
          1.78000000e+02,   1.63000000e+02,   1.58000000e+02,
          1.96000000e+02,   1.93000000e+02,   2.31000000e+02,
          2.42000000e+02,   2.71000000e+02],
       [  2.00000000e+01,   6.00000000e+01,   8.10000000e+01,
          7.10000000e+01,   1.07000000e+02,   9.70000000e+01,
          9.40000000e+01,   1.07000000e+02,   1.54000000e+02,
          1.51000000e+02,   1.29000000e+02,   1.75000000e+02,
          1.57000000e+02,   1.91000000e+02,   1.85000000e+02,
          2.09000000e+02,   2.07000000e+02,   2.22000000e+02,
          2.60000000e+02,   2.59000000e+02],
       [  1.70000000e+01,   5.80000000e+01,   6.80000000e+01,
          8.10000000e+01,   9.80000000e+01,   1.21000000e+02,
          8.90000000e+01,   1.11000000e+02,   1.42000000e+02,
          1.24000000e+02,   1.54000000e+02,   1.46000000e+02,
          1.93000000e+02,   2.01000000e+02,   1.79000000e+02,
          2.01000000e+02,   2.11000000e+02,   2.23000000e+02,
          2.36000000e+02,   2.65000000e+02],
       [  2.40000000e+01,   5.90000000e+01,   6.90000000e+01,
          7.40000000e+01,   7.90000000e+01,   1.06000000e+02,
          1.07000000e+02,   1.16000000e+02,   1.25000000e+02,
          1.33000000e+02,   1.60000000e+02,   1.76000000e+02,
          1.75000000e+02,   1.37000000e+02,   1.79000000e+02,
          1.88000000e+02,   2.04000000e+02,   2.29000000e+02,
          2.46000000e+02,   2.59000000e+02],
       [  1.60000000e+01,   5.40000000e+01,   6.00000000e+01,
          8.10000000e+01,   8.60000000e+01,   8.10000000e+01,
          1.01000000e+02,   1.30000000e+02,   1.15000000e+02,
          1.48000000e+02,   1.58000000e+02,   1.58000000e+02,
          1.63000000e+02,   1.81000000e+02,   1.85000000e+02,
          2.09000000e+02,   2.06000000e+02,   2.24000000e+02,
          2.14000000e+02,   2.57000000e+02],
       [  2.70000000e+01,   5.00000000e+01,   6.30000000e+01,
          8.00000000e+01,   7.90000000e+01,   9.70000000e+01,
          1.11000000e+02,   1.35000000e+02,   1.26000000e+02,
          1.58000000e+02,   1.46000000e+02,   1.79000000e+02,
          1.69000000e+02,   1.86000000e+02,   1.78000000e+02,
          2.01000000e+02,   2.22000000e+02,   2.56000000e+02,
          2.29000000e+02,   2.36000000e+02],
       [  2.20000000e+01,   5.70000000e+01,   7.50000000e+01,
          7.60000000e+01,   1.00000000e+02,   9.30000000e+01,
          1.05000000e+02,   9.50000000e+01,   1.14000000e+02,
          1.36000000e+02,   1.42000000e+02,   1.56000000e+02,
          1.65000000e+02,   2.02000000e+02,   1.63000000e+02,
          1.98000000e+02,   2.25000000e+02,   2.29000000e+02,
          2.16000000e+02,   2.67000000e+02],
       [  1.80000000e+01,   3.40000000e+01,   6.20000000e+01,
          8.10000000e+01,   9.40000000e+01,   8.90000000e+01,
          1.13000000e+02,   1.26000000e+02,   1.22000000e+02,
          1.47000000e+02,   1.45000000e+02,   1.52000000e+02,
          1.65000000e+02,   1.88000000e+02,   1.94000000e+02,
          1.94000000e+02,   2.17000000e+02,   2.17000000e+02,
          2.12000000e+02,   2.44000000e+02],
       [  1.40000000e+01,   5.30000000e+01,   5.60000000e+01,
          6.00000000e+01,   7.50000000e+01,   9.40000000e+01,
          9.40000000e+01,   1.04000000e+02,   1.24000000e+02,
          1.48000000e+02,   1.58000000e+02,   1.75000000e+02,
          1.68000000e+02,   1.75000000e+02,   1.89000000e+02,
          2.26000000e+02,   2.09000000e+02,   2.61000000e+02,
          2.15000000e+02,   2.64000000e+02],
       [  2.10000000e+01,   3.80000000e+01,   6.00000000e+01,
          7.70000000e+01,   7.50000000e+01,   8.30000000e+01,
          1.19000000e+02,   1.10000000e+02,   1.14000000e+02,
          1.39000000e+02,   1.53000000e+02,   1.65000000e+02,
          1.59000000e+02,   1.81000000e+02,   1.98000000e+02,
          2.28000000e+02,   2.09000000e+02,   2.12000000e+02,
          2.38000000e+02,   2.34000000e+02],
       [  2.10000000e+01,   2.70000000e+01,   7.00000000e+01,
          7.20000000e+01,   8.60000000e+01,   8.10000000e+01,
          1.09000000e+02,   1.08000000e+02,   1.19000000e+02,
          1.69000000e+02,   1.59000000e+02,   1.57000000e+02,
          1.63000000e+02,   1.84000000e+02,   2.00000000e+02,
          1.91000000e+02,   2.08000000e+02,   2.03000000e+02,
          2.17000000e+02,   2.32000000e+02],
       [  1.80000000e+01,   4.80000000e+01,   4.50000000e+01,
          6.50000000e+01,   8.70000000e+01,   9.00000000e+01,
          1.14000000e+02,   1.11000000e+02,   1.34000000e+02,
          1.19000000e+02,   1.43000000e+02,   1.54000000e+02,
          1.76000000e+02,   1.64000000e+02,   1.88000000e+02,
          2.13000000e+02,   1.99000000e+02,   2.14000000e+02,
          2.49000000e+02,   2.46000000e+02],
       [  1.00000000e+01,   4.80000000e+01,   4.80000000e+01,
          7.20000000e+01,   8.10000000e+01,   1.06000000e+02,
          1.14000000e+02,   1.05000000e+02,   1.32000000e+02,
          1.30000000e+02,   1.61000000e+02,   1.61000000e+02,
          1.87000000e+02,   1.77000000e+02,   1.91000000e+02,
          2.19000000e+02,   2.10000000e+02,   2.34000000e+02,
          2.15000000e+02,   2.21000000e+02],
       [  1.40000000e+01,   3.50000000e+01,   4.50000000e+01,
          6.30000000e+01,   7.70000000e+01,   8.90000000e+01,
          9.10000000e+01,   8.80000000e+01,   1.23000000e+02,
          1.48000000e+02,   1.56000000e+02,   1.51000000e+02,
          1.54000000e+02,   1.77000000e+02,   1.88000000e+02,
          2.09000000e+02,   1.87000000e+02,   2.13000000e+02,
          2.28000000e+02,   2.24000000e+02],
       [  1.30000000e+01,   4.00000000e+01,   5.30000000e+01,
          6.40000000e+01,   7.50000000e+01,   8.80000000e+01,
          1.04000000e+02,   1.31000000e+02,   1.16000000e+02,
          1.43000000e+02,   1.39000000e+02,   1.48000000e+02,
          1.78000000e+02,   1.69000000e+02,   1.88000000e+02,
          1.84000000e+02,   2.02000000e+02,   2.18000000e+02,
          2.21000000e+02,   2.04000000e+02],
       [  1.30000000e+01,   2.90000000e+01,   5.10000000e+01,
          5.30000000e+01,   6.10000000e+01,   8.70000000e+01,
          1.07000000e+02,   1.18000000e+02,   1.20000000e+02,
          1.21000000e+02,   1.39000000e+02,   1.30000000e+02,
          1.71000000e+02,   1.57000000e+02,   1.86000000e+02,
          1.87000000e+02,   2.06000000e+02,   2.12000000e+02,
          1.96000000e+02,   2.44000000e+02],
       [  1.00000000e+01,   3.70000000e+01,   5.10000000e+01,
          6.80000000e+01,   8.80000000e+01,   7.30000000e+01,
          6.90000000e+01,   1.02000000e+02,   1.09000000e+02,
          1.25000000e+02,   1.32000000e+02,   1.47000000e+02,
          1.93000000e+02,   1.91000000e+02,   1.72000000e+02,
          1.88000000e+02,   1.96000000e+02,   2.39000000e+02,
          2.39000000e+02,   2.42000000e+02],
       [  1.50000000e+01,   2.50000000e+01,   5.20000000e+01,
          5.90000000e+01,   7.30000000e+01,   6.90000000e+01,
          8.30000000e+01,   9.80000000e+01,   1.03000000e+02,
          1.37000000e+02,   1.78000000e+02,   1.51000000e+02,
          1.73000000e+02,   1.65000000e+02,   1.88000000e+02,
          2.03000000e+02,   1.97000000e+02,   2.07000000e+02,
          2.31000000e+02,   2.41000000e+02],
       [  1.60000000e+01,   2.60000000e+01,   5.40000000e+01,
          4.70000000e+01,   6.00000000e+01,   7.30000000e+01,
          1.06000000e+02,   1.05000000e+02,   1.14000000e+02,
          1.27000000e+02,   1.45000000e+02,   1.49000000e+02,
          1.59000000e+02,   1.94000000e+02,   1.68000000e+02,
          2.08000000e+02,   2.32000000e+02,   2.26000000e+02,
          2.04000000e+02,   2.33000000e+02],
       [  3.00000000e+00,   2.90000000e+01,   4.20000000e+01,
          6.20000000e+01,   6.50000000e+01,   7.40000000e+01,
          9.00000000e+01,   8.30000000e+01,   1.28000000e+02,
          1.19000000e+02,   1.50000000e+02,   1.18000000e+02,
          1.71000000e+02,   1.75000000e+02,   1.76000000e+02,
          1.60000000e+02,   2.24000000e+02,   2.46000000e+02,
          2.28000000e+02,   2.19000000e+02]])

In [28]:
with open('DR12QDDbin3.pkl','w') as f:
    pickle.dump(dd2d,f)    
dd2d


Out[28]:
array([[  1.32956000e+05,   5.40000000e+01,   6.30000000e+01,
          8.40000000e+01,   8.20000000e+01,   1.08000000e+02,
          1.04000000e+02,   1.04000000e+02,   1.20000000e+02,
          1.65000000e+02,   1.63000000e+02,   1.58000000e+02,
          1.78000000e+02,   1.63000000e+02,   1.58000000e+02,
          1.96000000e+02,   1.93000000e+02,   2.31000000e+02,
          2.42000000e+02,   2.71000000e+02],
       [  2.00000000e+01,   6.00000000e+01,   8.10000000e+01,
          7.10000000e+01,   1.07000000e+02,   9.70000000e+01,
          9.40000000e+01,   1.07000000e+02,   1.54000000e+02,
          1.51000000e+02,   1.29000000e+02,   1.75000000e+02,
          1.57000000e+02,   1.91000000e+02,   1.85000000e+02,
          2.09000000e+02,   2.07000000e+02,   2.22000000e+02,
          2.60000000e+02,   2.59000000e+02],
       [  1.70000000e+01,   5.80000000e+01,   6.80000000e+01,
          8.10000000e+01,   9.80000000e+01,   1.21000000e+02,
          8.90000000e+01,   1.11000000e+02,   1.42000000e+02,
          1.24000000e+02,   1.54000000e+02,   1.46000000e+02,
          1.93000000e+02,   2.01000000e+02,   1.79000000e+02,
          2.01000000e+02,   2.11000000e+02,   2.23000000e+02,
          2.36000000e+02,   2.65000000e+02],
       [  2.40000000e+01,   5.90000000e+01,   6.90000000e+01,
          7.40000000e+01,   7.90000000e+01,   1.06000000e+02,
          1.07000000e+02,   1.16000000e+02,   1.25000000e+02,
          1.33000000e+02,   1.60000000e+02,   1.76000000e+02,
          1.75000000e+02,   1.37000000e+02,   1.79000000e+02,
          1.88000000e+02,   2.04000000e+02,   2.29000000e+02,
          2.46000000e+02,   2.59000000e+02],
       [  1.60000000e+01,   5.40000000e+01,   6.00000000e+01,
          8.10000000e+01,   8.60000000e+01,   8.10000000e+01,
          1.01000000e+02,   1.30000000e+02,   1.15000000e+02,
          1.48000000e+02,   1.58000000e+02,   1.58000000e+02,
          1.63000000e+02,   1.81000000e+02,   1.85000000e+02,
          2.09000000e+02,   2.06000000e+02,   2.24000000e+02,
          2.14000000e+02,   2.57000000e+02],
       [  2.70000000e+01,   5.00000000e+01,   6.30000000e+01,
          8.00000000e+01,   7.90000000e+01,   9.70000000e+01,
          1.11000000e+02,   1.35000000e+02,   1.26000000e+02,
          1.58000000e+02,   1.46000000e+02,   1.79000000e+02,
          1.69000000e+02,   1.86000000e+02,   1.78000000e+02,
          2.01000000e+02,   2.22000000e+02,   2.56000000e+02,
          2.29000000e+02,   2.36000000e+02],
       [  2.20000000e+01,   5.70000000e+01,   7.50000000e+01,
          7.60000000e+01,   1.00000000e+02,   9.30000000e+01,
          1.05000000e+02,   9.50000000e+01,   1.14000000e+02,
          1.36000000e+02,   1.42000000e+02,   1.56000000e+02,
          1.65000000e+02,   2.02000000e+02,   1.63000000e+02,
          1.98000000e+02,   2.25000000e+02,   2.29000000e+02,
          2.16000000e+02,   2.67000000e+02],
       [  1.80000000e+01,   3.40000000e+01,   6.20000000e+01,
          8.10000000e+01,   9.40000000e+01,   8.90000000e+01,
          1.13000000e+02,   1.26000000e+02,   1.22000000e+02,
          1.47000000e+02,   1.45000000e+02,   1.52000000e+02,
          1.65000000e+02,   1.88000000e+02,   1.94000000e+02,
          1.94000000e+02,   2.17000000e+02,   2.17000000e+02,
          2.12000000e+02,   2.44000000e+02],
       [  1.40000000e+01,   5.30000000e+01,   5.60000000e+01,
          6.00000000e+01,   7.50000000e+01,   9.40000000e+01,
          9.40000000e+01,   1.04000000e+02,   1.24000000e+02,
          1.48000000e+02,   1.58000000e+02,   1.75000000e+02,
          1.68000000e+02,   1.75000000e+02,   1.89000000e+02,
          2.26000000e+02,   2.09000000e+02,   2.61000000e+02,
          2.15000000e+02,   2.64000000e+02],
       [  2.10000000e+01,   3.80000000e+01,   6.00000000e+01,
          7.70000000e+01,   7.50000000e+01,   8.30000000e+01,
          1.19000000e+02,   1.10000000e+02,   1.14000000e+02,
          1.39000000e+02,   1.53000000e+02,   1.65000000e+02,
          1.59000000e+02,   1.81000000e+02,   1.98000000e+02,
          2.28000000e+02,   2.09000000e+02,   2.12000000e+02,
          2.38000000e+02,   2.34000000e+02],
       [  2.10000000e+01,   2.70000000e+01,   7.00000000e+01,
          7.20000000e+01,   8.60000000e+01,   8.10000000e+01,
          1.09000000e+02,   1.08000000e+02,   1.19000000e+02,
          1.69000000e+02,   1.59000000e+02,   1.57000000e+02,
          1.63000000e+02,   1.84000000e+02,   2.00000000e+02,
          1.91000000e+02,   2.08000000e+02,   2.03000000e+02,
          2.17000000e+02,   2.32000000e+02],
       [  1.80000000e+01,   4.80000000e+01,   4.50000000e+01,
          6.50000000e+01,   8.70000000e+01,   9.00000000e+01,
          1.14000000e+02,   1.11000000e+02,   1.34000000e+02,
          1.19000000e+02,   1.43000000e+02,   1.54000000e+02,
          1.76000000e+02,   1.64000000e+02,   1.88000000e+02,
          2.13000000e+02,   1.99000000e+02,   2.14000000e+02,
          2.49000000e+02,   2.46000000e+02],
       [  1.00000000e+01,   4.80000000e+01,   4.80000000e+01,
          7.20000000e+01,   8.10000000e+01,   1.06000000e+02,
          1.14000000e+02,   1.05000000e+02,   1.32000000e+02,
          1.30000000e+02,   1.61000000e+02,   1.61000000e+02,
          1.87000000e+02,   1.77000000e+02,   1.91000000e+02,
          2.19000000e+02,   2.10000000e+02,   2.34000000e+02,
          2.15000000e+02,   2.21000000e+02],
       [  1.40000000e+01,   3.50000000e+01,   4.50000000e+01,
          6.30000000e+01,   7.70000000e+01,   8.90000000e+01,
          9.10000000e+01,   8.80000000e+01,   1.23000000e+02,
          1.48000000e+02,   1.56000000e+02,   1.51000000e+02,
          1.54000000e+02,   1.77000000e+02,   1.88000000e+02,
          2.09000000e+02,   1.87000000e+02,   2.13000000e+02,
          2.28000000e+02,   2.24000000e+02],
       [  1.30000000e+01,   4.00000000e+01,   5.30000000e+01,
          6.40000000e+01,   7.50000000e+01,   8.80000000e+01,
          1.04000000e+02,   1.31000000e+02,   1.16000000e+02,
          1.43000000e+02,   1.39000000e+02,   1.48000000e+02,
          1.78000000e+02,   1.69000000e+02,   1.88000000e+02,
          1.84000000e+02,   2.02000000e+02,   2.18000000e+02,
          2.21000000e+02,   2.04000000e+02],
       [  1.30000000e+01,   2.90000000e+01,   5.10000000e+01,
          5.30000000e+01,   6.10000000e+01,   8.70000000e+01,
          1.07000000e+02,   1.18000000e+02,   1.20000000e+02,
          1.21000000e+02,   1.39000000e+02,   1.30000000e+02,
          1.71000000e+02,   1.57000000e+02,   1.86000000e+02,
          1.87000000e+02,   2.06000000e+02,   2.12000000e+02,
          1.96000000e+02,   2.44000000e+02],
       [  1.00000000e+01,   3.70000000e+01,   5.10000000e+01,
          6.80000000e+01,   8.80000000e+01,   7.30000000e+01,
          6.90000000e+01,   1.02000000e+02,   1.09000000e+02,
          1.25000000e+02,   1.32000000e+02,   1.47000000e+02,
          1.93000000e+02,   1.91000000e+02,   1.72000000e+02,
          1.88000000e+02,   1.96000000e+02,   2.39000000e+02,
          2.39000000e+02,   2.42000000e+02],
       [  1.50000000e+01,   2.50000000e+01,   5.20000000e+01,
          5.90000000e+01,   7.30000000e+01,   6.90000000e+01,
          8.30000000e+01,   9.80000000e+01,   1.03000000e+02,
          1.37000000e+02,   1.78000000e+02,   1.51000000e+02,
          1.73000000e+02,   1.65000000e+02,   1.88000000e+02,
          2.03000000e+02,   1.97000000e+02,   2.07000000e+02,
          2.31000000e+02,   2.41000000e+02],
       [  1.60000000e+01,   2.60000000e+01,   5.40000000e+01,
          4.70000000e+01,   6.00000000e+01,   7.30000000e+01,
          1.06000000e+02,   1.05000000e+02,   1.14000000e+02,
          1.27000000e+02,   1.45000000e+02,   1.49000000e+02,
          1.59000000e+02,   1.94000000e+02,   1.68000000e+02,
          2.08000000e+02,   2.32000000e+02,   2.26000000e+02,
          2.04000000e+02,   2.33000000e+02],
       [  3.00000000e+00,   2.90000000e+01,   4.20000000e+01,
          6.20000000e+01,   6.50000000e+01,   7.40000000e+01,
          9.00000000e+01,   8.30000000e+01,   1.28000000e+02,
          1.19000000e+02,   1.50000000e+02,   1.18000000e+02,
          1.71000000e+02,   1.75000000e+02,   1.76000000e+02,
          1.60000000e+02,   2.24000000e+02,   2.46000000e+02,
          2.28000000e+02,   2.19000000e+02]])

In [ ]:


In [29]:
# Getting back the objects:
with open('../output/DR12Qbin4.pkl') as f:  # Python 3: open(..., 'rb')
    dat = pickle.load(f)
dat


Out[29]:
array([[  3.08883900e+00,   1.03000000e-04,   3.49280000e-01],
       [  2.90644800e+00,   2.52000000e-04,   2.80095000e-01],
       [  2.87937200e+00,   3.61000000e-04,  -4.85800000e-03],
       ..., 
       [  3.16691100e+00,   6.28303300e+00,   6.24115000e-01],
       [  3.06474900e+00,   6.28308500e+00,   7.52100000e-03],
       [  3.11339100e+00,   6.28317300e+00,   6.05993000e-01]])

In [30]:
dd2d=np.zeros((20,20))

In [31]:
len(dat)


Out[31]:
42945

In [32]:
dd2d


Out[32]:
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.]])

In [33]:
%%time
dist0=d.cdist([dat[0],],dat,APdz)[0]
dist1=d.cdist([dat[0],],dat,APzdth)[0]
print np.histogram2d(dist0, dist1, bins=20, range=rng)[0]


[[ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.]]
CPU times: user 384 ms, sys: 26 ms, total: 410 ms
Wall time: 390 ms

In [34]:
%%time
while(len(dat))>0:
    dist0=d.cdist([dat[0],],dat,APdz)[0]
    dist1=d.cdist([dat[0],],dat,APzdth)[0]
    dd2d+=np.histogram2d(dist0, dist1, bins=20, range=rng)[0]
    dat=np.delete(dat,0,axis=0)
    if len(dat)%1000==0:
        print len(dat)/1000 
print dd2d


42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
[[  4.09250000e+04   3.00000000e+00   7.00000000e+00   6.00000000e+00
    1.00000000e+01   4.00000000e+00   4.00000000e+00   6.00000000e+00
    9.00000000e+00   9.00000000e+00   9.00000000e+00   1.50000000e+01
    1.40000000e+01   8.00000000e+00   1.30000000e+01   1.10000000e+01
    1.40000000e+01   1.00000000e+01   1.50000000e+01   1.30000000e+01]
 [  0.00000000e+00   6.00000000e+00   7.00000000e+00   2.00000000e+00
    6.00000000e+00   3.00000000e+00   1.20000000e+01   7.00000000e+00
    5.00000000e+00   6.00000000e+00   1.10000000e+01   7.00000000e+00
    1.20000000e+01   1.30000000e+01   1.20000000e+01   1.40000000e+01
    1.60000000e+01   9.00000000e+00   1.10000000e+01   1.30000000e+01]
 [  3.00000000e+00   5.00000000e+00   5.00000000e+00   6.00000000e+00
    7.00000000e+00   1.20000000e+01   9.00000000e+00   8.00000000e+00
    1.10000000e+01   6.00000000e+00   9.00000000e+00   1.00000000e+01
    1.00000000e+01   1.40000000e+01   1.40000000e+01   1.10000000e+01
    1.30000000e+01   2.10000000e+01   2.10000000e+01   2.00000000e+01]
 [  1.00000000e+00   2.00000000e+00   3.00000000e+00   3.00000000e+00
    3.00000000e+00   6.00000000e+00   8.00000000e+00   5.00000000e+00
    5.00000000e+00   1.20000000e+01   9.00000000e+00   1.20000000e+01
    1.10000000e+01   1.10000000e+01   1.70000000e+01   9.00000000e+00
    1.20000000e+01   1.40000000e+01   1.10000000e+01   2.00000000e+01]
 [  1.00000000e+00   5.00000000e+00   3.00000000e+00   9.00000000e+00
    5.00000000e+00   9.00000000e+00   5.00000000e+00   7.00000000e+00
    8.00000000e+00   8.00000000e+00   7.00000000e+00   8.00000000e+00
    1.10000000e+01   9.00000000e+00   1.40000000e+01   9.00000000e+00
    1.30000000e+01   1.50000000e+01   1.40000000e+01   1.40000000e+01]
 [  3.00000000e+00   5.00000000e+00   4.00000000e+00   5.00000000e+00
    3.00000000e+00   1.30000000e+01   1.10000000e+01   5.00000000e+00
    5.00000000e+00   7.00000000e+00   1.00000000e+01   1.50000000e+01
    1.30000000e+01   1.10000000e+01   1.70000000e+01   1.20000000e+01
    1.50000000e+01   2.30000000e+01   1.50000000e+01   1.80000000e+01]
 [  1.00000000e+00   1.00000000e+00   6.00000000e+00   3.00000000e+00
    8.00000000e+00   4.00000000e+00   7.00000000e+00   6.00000000e+00
    1.30000000e+01   4.00000000e+00   1.20000000e+01   1.00000000e+01
    1.00000000e+01   1.10000000e+01   8.00000000e+00   1.40000000e+01
    1.50000000e+01   1.80000000e+01   1.00000000e+01   1.20000000e+01]
 [  2.00000000e+00   3.00000000e+00   1.20000000e+01   5.00000000e+00
    8.00000000e+00   7.00000000e+00   8.00000000e+00   5.00000000e+00
    8.00000000e+00   9.00000000e+00   6.00000000e+00   9.00000000e+00
    1.40000000e+01   1.10000000e+01   1.20000000e+01   8.00000000e+00
    1.10000000e+01   1.40000000e+01   1.30000000e+01   1.60000000e+01]
 [  0.00000000e+00   1.00000000e+00   6.00000000e+00   4.00000000e+00
    4.00000000e+00   4.00000000e+00   7.00000000e+00   6.00000000e+00
    1.00000000e+01   1.10000000e+01   1.00000000e+01   6.00000000e+00
    1.00000000e+01   1.50000000e+01   1.20000000e+01   1.50000000e+01
    1.80000000e+01   1.40000000e+01   2.00000000e+01   1.40000000e+01]
 [  2.00000000e+00   1.00000000e+00   4.00000000e+00   6.00000000e+00
    5.00000000e+00   5.00000000e+00   7.00000000e+00   1.20000000e+01
    1.00000000e+01   9.00000000e+00   1.60000000e+01   8.00000000e+00
    8.00000000e+00   1.20000000e+01   5.00000000e+00   1.80000000e+01
    1.20000000e+01   1.70000000e+01   7.00000000e+00   1.70000000e+01]
 [  1.00000000e+00   3.00000000e+00   5.00000000e+00   6.00000000e+00
    3.00000000e+00   2.00000000e+00   1.00000000e+01   7.00000000e+00
    5.00000000e+00   1.00000000e+01   1.10000000e+01   7.00000000e+00
    1.00000000e+01   1.00000000e+01   9.00000000e+00   1.50000000e+01
    1.50000000e+01   2.20000000e+01   1.00000000e+01   1.40000000e+01]
 [  2.00000000e+00   2.00000000e+00   8.00000000e+00   2.00000000e+00
    3.00000000e+00   5.00000000e+00   7.00000000e+00   5.00000000e+00
    6.00000000e+00   9.00000000e+00   1.70000000e+01   1.70000000e+01
    8.00000000e+00   2.20000000e+01   1.30000000e+01   1.20000000e+01
    1.50000000e+01   1.70000000e+01   1.20000000e+01   1.20000000e+01]
 [  2.00000000e+00   4.00000000e+00   6.00000000e+00   6.00000000e+00
    5.00000000e+00   5.00000000e+00   9.00000000e+00   8.00000000e+00
    6.00000000e+00   7.00000000e+00   7.00000000e+00   1.30000000e+01
    1.40000000e+01   7.00000000e+00   1.10000000e+01   1.50000000e+01
    1.30000000e+01   1.90000000e+01   1.50000000e+01   8.00000000e+00]
 [  2.00000000e+00   3.00000000e+00   8.00000000e+00   6.00000000e+00
    4.00000000e+00   4.00000000e+00   4.00000000e+00   8.00000000e+00
    6.00000000e+00   1.10000000e+01   3.00000000e+00   7.00000000e+00
    9.00000000e+00   1.40000000e+01   2.60000000e+01   1.60000000e+01
    1.30000000e+01   1.60000000e+01   1.30000000e+01   1.70000000e+01]
 [  0.00000000e+00   3.00000000e+00   3.00000000e+00   6.00000000e+00
    6.00000000e+00   7.00000000e+00   5.00000000e+00   5.00000000e+00
    8.00000000e+00   9.00000000e+00   9.00000000e+00   7.00000000e+00
    7.00000000e+00   1.30000000e+01   1.10000000e+01   1.00000000e+01
    1.30000000e+01   9.00000000e+00   1.10000000e+01   1.40000000e+01]
 [  0.00000000e+00   3.00000000e+00   5.00000000e+00   4.00000000e+00
    3.00000000e+00   4.00000000e+00   3.00000000e+00   7.00000000e+00
    8.00000000e+00   8.00000000e+00   8.00000000e+00   1.00000000e+01
    7.00000000e+00   1.20000000e+01   1.00000000e+01   1.70000000e+01
    1.00000000e+01   2.30000000e+01   1.00000000e+01   1.50000000e+01]
 [  1.00000000e+00   1.00000000e+00   4.00000000e+00   4.00000000e+00
    5.00000000e+00   6.00000000e+00   3.00000000e+00   7.00000000e+00
    1.00000000e+01   6.00000000e+00   6.00000000e+00   7.00000000e+00
    8.00000000e+00   1.10000000e+01   1.40000000e+01   8.00000000e+00
    9.00000000e+00   1.50000000e+01   8.00000000e+00   1.50000000e+01]
 [  0.00000000e+00   4.00000000e+00   2.00000000e+00   6.00000000e+00
    4.00000000e+00   5.00000000e+00   5.00000000e+00   6.00000000e+00
    8.00000000e+00   9.00000000e+00   9.00000000e+00   8.00000000e+00
    1.20000000e+01   9.00000000e+00   1.30000000e+01   1.30000000e+01
    1.10000000e+01   9.00000000e+00   9.00000000e+00   1.30000000e+01]
 [  1.00000000e+00   3.00000000e+00   3.00000000e+00   4.00000000e+00
    5.00000000e+00   7.00000000e+00   1.00000000e+01   5.00000000e+00
    7.00000000e+00   1.20000000e+01   1.20000000e+01   1.40000000e+01
    6.00000000e+00   1.00000000e+01   8.00000000e+00   1.30000000e+01
    1.70000000e+01   1.40000000e+01   1.00000000e+01   1.80000000e+01]
 [  1.00000000e+00   2.00000000e+00   3.00000000e+00   3.00000000e+00
    6.00000000e+00   4.00000000e+00   5.00000000e+00   5.00000000e+00
    5.00000000e+00   9.00000000e+00   1.50000000e+01   1.20000000e+01
    1.10000000e+01   1.00000000e+01   1.30000000e+01   9.00000000e+00
    1.40000000e+01   2.00000000e+01   1.20000000e+01   1.90000000e+01]]
CPU times: user 2h 4min 58s, sys: 53.1 s, total: 2h 5min 51s
Wall time: 2h 5min 26s

In [35]:
dd2d


Out[35]:
array([[  4.09250000e+04,   3.00000000e+00,   7.00000000e+00,
          6.00000000e+00,   1.00000000e+01,   4.00000000e+00,
          4.00000000e+00,   6.00000000e+00,   9.00000000e+00,
          9.00000000e+00,   9.00000000e+00,   1.50000000e+01,
          1.40000000e+01,   8.00000000e+00,   1.30000000e+01,
          1.10000000e+01,   1.40000000e+01,   1.00000000e+01,
          1.50000000e+01,   1.30000000e+01],
       [  0.00000000e+00,   6.00000000e+00,   7.00000000e+00,
          2.00000000e+00,   6.00000000e+00,   3.00000000e+00,
          1.20000000e+01,   7.00000000e+00,   5.00000000e+00,
          6.00000000e+00,   1.10000000e+01,   7.00000000e+00,
          1.20000000e+01,   1.30000000e+01,   1.20000000e+01,
          1.40000000e+01,   1.60000000e+01,   9.00000000e+00,
          1.10000000e+01,   1.30000000e+01],
       [  3.00000000e+00,   5.00000000e+00,   5.00000000e+00,
          6.00000000e+00,   7.00000000e+00,   1.20000000e+01,
          9.00000000e+00,   8.00000000e+00,   1.10000000e+01,
          6.00000000e+00,   9.00000000e+00,   1.00000000e+01,
          1.00000000e+01,   1.40000000e+01,   1.40000000e+01,
          1.10000000e+01,   1.30000000e+01,   2.10000000e+01,
          2.10000000e+01,   2.00000000e+01],
       [  1.00000000e+00,   2.00000000e+00,   3.00000000e+00,
          3.00000000e+00,   3.00000000e+00,   6.00000000e+00,
          8.00000000e+00,   5.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   9.00000000e+00,   1.20000000e+01,
          1.10000000e+01,   1.10000000e+01,   1.70000000e+01,
          9.00000000e+00,   1.20000000e+01,   1.40000000e+01,
          1.10000000e+01,   2.00000000e+01],
       [  1.00000000e+00,   5.00000000e+00,   3.00000000e+00,
          9.00000000e+00,   5.00000000e+00,   9.00000000e+00,
          5.00000000e+00,   7.00000000e+00,   8.00000000e+00,
          8.00000000e+00,   7.00000000e+00,   8.00000000e+00,
          1.10000000e+01,   9.00000000e+00,   1.40000000e+01,
          9.00000000e+00,   1.30000000e+01,   1.50000000e+01,
          1.40000000e+01,   1.40000000e+01],
       [  3.00000000e+00,   5.00000000e+00,   4.00000000e+00,
          5.00000000e+00,   3.00000000e+00,   1.30000000e+01,
          1.10000000e+01,   5.00000000e+00,   5.00000000e+00,
          7.00000000e+00,   1.00000000e+01,   1.50000000e+01,
          1.30000000e+01,   1.10000000e+01,   1.70000000e+01,
          1.20000000e+01,   1.50000000e+01,   2.30000000e+01,
          1.50000000e+01,   1.80000000e+01],
       [  1.00000000e+00,   1.00000000e+00,   6.00000000e+00,
          3.00000000e+00,   8.00000000e+00,   4.00000000e+00,
          7.00000000e+00,   6.00000000e+00,   1.30000000e+01,
          4.00000000e+00,   1.20000000e+01,   1.00000000e+01,
          1.00000000e+01,   1.10000000e+01,   8.00000000e+00,
          1.40000000e+01,   1.50000000e+01,   1.80000000e+01,
          1.00000000e+01,   1.20000000e+01],
       [  2.00000000e+00,   3.00000000e+00,   1.20000000e+01,
          5.00000000e+00,   8.00000000e+00,   7.00000000e+00,
          8.00000000e+00,   5.00000000e+00,   8.00000000e+00,
          9.00000000e+00,   6.00000000e+00,   9.00000000e+00,
          1.40000000e+01,   1.10000000e+01,   1.20000000e+01,
          8.00000000e+00,   1.10000000e+01,   1.40000000e+01,
          1.30000000e+01,   1.60000000e+01],
       [  0.00000000e+00,   1.00000000e+00,   6.00000000e+00,
          4.00000000e+00,   4.00000000e+00,   4.00000000e+00,
          7.00000000e+00,   6.00000000e+00,   1.00000000e+01,
          1.10000000e+01,   1.00000000e+01,   6.00000000e+00,
          1.00000000e+01,   1.50000000e+01,   1.20000000e+01,
          1.50000000e+01,   1.80000000e+01,   1.40000000e+01,
          2.00000000e+01,   1.40000000e+01],
       [  2.00000000e+00,   1.00000000e+00,   4.00000000e+00,
          6.00000000e+00,   5.00000000e+00,   5.00000000e+00,
          7.00000000e+00,   1.20000000e+01,   1.00000000e+01,
          9.00000000e+00,   1.60000000e+01,   8.00000000e+00,
          8.00000000e+00,   1.20000000e+01,   5.00000000e+00,
          1.80000000e+01,   1.20000000e+01,   1.70000000e+01,
          7.00000000e+00,   1.70000000e+01],
       [  1.00000000e+00,   3.00000000e+00,   5.00000000e+00,
          6.00000000e+00,   3.00000000e+00,   2.00000000e+00,
          1.00000000e+01,   7.00000000e+00,   5.00000000e+00,
          1.00000000e+01,   1.10000000e+01,   7.00000000e+00,
          1.00000000e+01,   1.00000000e+01,   9.00000000e+00,
          1.50000000e+01,   1.50000000e+01,   2.20000000e+01,
          1.00000000e+01,   1.40000000e+01],
       [  2.00000000e+00,   2.00000000e+00,   8.00000000e+00,
          2.00000000e+00,   3.00000000e+00,   5.00000000e+00,
          7.00000000e+00,   5.00000000e+00,   6.00000000e+00,
          9.00000000e+00,   1.70000000e+01,   1.70000000e+01,
          8.00000000e+00,   2.20000000e+01,   1.30000000e+01,
          1.20000000e+01,   1.50000000e+01,   1.70000000e+01,
          1.20000000e+01,   1.20000000e+01],
       [  2.00000000e+00,   4.00000000e+00,   6.00000000e+00,
          6.00000000e+00,   5.00000000e+00,   5.00000000e+00,
          9.00000000e+00,   8.00000000e+00,   6.00000000e+00,
          7.00000000e+00,   7.00000000e+00,   1.30000000e+01,
          1.40000000e+01,   7.00000000e+00,   1.10000000e+01,
          1.50000000e+01,   1.30000000e+01,   1.90000000e+01,
          1.50000000e+01,   8.00000000e+00],
       [  2.00000000e+00,   3.00000000e+00,   8.00000000e+00,
          6.00000000e+00,   4.00000000e+00,   4.00000000e+00,
          4.00000000e+00,   8.00000000e+00,   6.00000000e+00,
          1.10000000e+01,   3.00000000e+00,   7.00000000e+00,
          9.00000000e+00,   1.40000000e+01,   2.60000000e+01,
          1.60000000e+01,   1.30000000e+01,   1.60000000e+01,
          1.30000000e+01,   1.70000000e+01],
       [  0.00000000e+00,   3.00000000e+00,   3.00000000e+00,
          6.00000000e+00,   6.00000000e+00,   7.00000000e+00,
          5.00000000e+00,   5.00000000e+00,   8.00000000e+00,
          9.00000000e+00,   9.00000000e+00,   7.00000000e+00,
          7.00000000e+00,   1.30000000e+01,   1.10000000e+01,
          1.00000000e+01,   1.30000000e+01,   9.00000000e+00,
          1.10000000e+01,   1.40000000e+01],
       [  0.00000000e+00,   3.00000000e+00,   5.00000000e+00,
          4.00000000e+00,   3.00000000e+00,   4.00000000e+00,
          3.00000000e+00,   7.00000000e+00,   8.00000000e+00,
          8.00000000e+00,   8.00000000e+00,   1.00000000e+01,
          7.00000000e+00,   1.20000000e+01,   1.00000000e+01,
          1.70000000e+01,   1.00000000e+01,   2.30000000e+01,
          1.00000000e+01,   1.50000000e+01],
       [  1.00000000e+00,   1.00000000e+00,   4.00000000e+00,
          4.00000000e+00,   5.00000000e+00,   6.00000000e+00,
          3.00000000e+00,   7.00000000e+00,   1.00000000e+01,
          6.00000000e+00,   6.00000000e+00,   7.00000000e+00,
          8.00000000e+00,   1.10000000e+01,   1.40000000e+01,
          8.00000000e+00,   9.00000000e+00,   1.50000000e+01,
          8.00000000e+00,   1.50000000e+01],
       [  0.00000000e+00,   4.00000000e+00,   2.00000000e+00,
          6.00000000e+00,   4.00000000e+00,   5.00000000e+00,
          5.00000000e+00,   6.00000000e+00,   8.00000000e+00,
          9.00000000e+00,   9.00000000e+00,   8.00000000e+00,
          1.20000000e+01,   9.00000000e+00,   1.30000000e+01,
          1.30000000e+01,   1.10000000e+01,   9.00000000e+00,
          9.00000000e+00,   1.30000000e+01],
       [  1.00000000e+00,   3.00000000e+00,   3.00000000e+00,
          4.00000000e+00,   5.00000000e+00,   7.00000000e+00,
          1.00000000e+01,   5.00000000e+00,   7.00000000e+00,
          1.20000000e+01,   1.20000000e+01,   1.40000000e+01,
          6.00000000e+00,   1.00000000e+01,   8.00000000e+00,
          1.30000000e+01,   1.70000000e+01,   1.40000000e+01,
          1.00000000e+01,   1.80000000e+01],
       [  1.00000000e+00,   2.00000000e+00,   3.00000000e+00,
          3.00000000e+00,   6.00000000e+00,   4.00000000e+00,
          5.00000000e+00,   5.00000000e+00,   5.00000000e+00,
          9.00000000e+00,   1.50000000e+01,   1.20000000e+01,
          1.10000000e+01,   1.00000000e+01,   1.30000000e+01,
          9.00000000e+00,   1.40000000e+01,   2.00000000e+01,
          1.20000000e+01,   1.90000000e+01]])

In [36]:
with open('DR12QDDbin4.pkl','w') as f:
    pickle.dump(dd2d,f)    
dd2d


Out[36]:
array([[  4.09250000e+04,   3.00000000e+00,   7.00000000e+00,
          6.00000000e+00,   1.00000000e+01,   4.00000000e+00,
          4.00000000e+00,   6.00000000e+00,   9.00000000e+00,
          9.00000000e+00,   9.00000000e+00,   1.50000000e+01,
          1.40000000e+01,   8.00000000e+00,   1.30000000e+01,
          1.10000000e+01,   1.40000000e+01,   1.00000000e+01,
          1.50000000e+01,   1.30000000e+01],
       [  0.00000000e+00,   6.00000000e+00,   7.00000000e+00,
          2.00000000e+00,   6.00000000e+00,   3.00000000e+00,
          1.20000000e+01,   7.00000000e+00,   5.00000000e+00,
          6.00000000e+00,   1.10000000e+01,   7.00000000e+00,
          1.20000000e+01,   1.30000000e+01,   1.20000000e+01,
          1.40000000e+01,   1.60000000e+01,   9.00000000e+00,
          1.10000000e+01,   1.30000000e+01],
       [  3.00000000e+00,   5.00000000e+00,   5.00000000e+00,
          6.00000000e+00,   7.00000000e+00,   1.20000000e+01,
          9.00000000e+00,   8.00000000e+00,   1.10000000e+01,
          6.00000000e+00,   9.00000000e+00,   1.00000000e+01,
          1.00000000e+01,   1.40000000e+01,   1.40000000e+01,
          1.10000000e+01,   1.30000000e+01,   2.10000000e+01,
          2.10000000e+01,   2.00000000e+01],
       [  1.00000000e+00,   2.00000000e+00,   3.00000000e+00,
          3.00000000e+00,   3.00000000e+00,   6.00000000e+00,
          8.00000000e+00,   5.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   9.00000000e+00,   1.20000000e+01,
          1.10000000e+01,   1.10000000e+01,   1.70000000e+01,
          9.00000000e+00,   1.20000000e+01,   1.40000000e+01,
          1.10000000e+01,   2.00000000e+01],
       [  1.00000000e+00,   5.00000000e+00,   3.00000000e+00,
          9.00000000e+00,   5.00000000e+00,   9.00000000e+00,
          5.00000000e+00,   7.00000000e+00,   8.00000000e+00,
          8.00000000e+00,   7.00000000e+00,   8.00000000e+00,
          1.10000000e+01,   9.00000000e+00,   1.40000000e+01,
          9.00000000e+00,   1.30000000e+01,   1.50000000e+01,
          1.40000000e+01,   1.40000000e+01],
       [  3.00000000e+00,   5.00000000e+00,   4.00000000e+00,
          5.00000000e+00,   3.00000000e+00,   1.30000000e+01,
          1.10000000e+01,   5.00000000e+00,   5.00000000e+00,
          7.00000000e+00,   1.00000000e+01,   1.50000000e+01,
          1.30000000e+01,   1.10000000e+01,   1.70000000e+01,
          1.20000000e+01,   1.50000000e+01,   2.30000000e+01,
          1.50000000e+01,   1.80000000e+01],
       [  1.00000000e+00,   1.00000000e+00,   6.00000000e+00,
          3.00000000e+00,   8.00000000e+00,   4.00000000e+00,
          7.00000000e+00,   6.00000000e+00,   1.30000000e+01,
          4.00000000e+00,   1.20000000e+01,   1.00000000e+01,
          1.00000000e+01,   1.10000000e+01,   8.00000000e+00,
          1.40000000e+01,   1.50000000e+01,   1.80000000e+01,
          1.00000000e+01,   1.20000000e+01],
       [  2.00000000e+00,   3.00000000e+00,   1.20000000e+01,
          5.00000000e+00,   8.00000000e+00,   7.00000000e+00,
          8.00000000e+00,   5.00000000e+00,   8.00000000e+00,
          9.00000000e+00,   6.00000000e+00,   9.00000000e+00,
          1.40000000e+01,   1.10000000e+01,   1.20000000e+01,
          8.00000000e+00,   1.10000000e+01,   1.40000000e+01,
          1.30000000e+01,   1.60000000e+01],
       [  0.00000000e+00,   1.00000000e+00,   6.00000000e+00,
          4.00000000e+00,   4.00000000e+00,   4.00000000e+00,
          7.00000000e+00,   6.00000000e+00,   1.00000000e+01,
          1.10000000e+01,   1.00000000e+01,   6.00000000e+00,
          1.00000000e+01,   1.50000000e+01,   1.20000000e+01,
          1.50000000e+01,   1.80000000e+01,   1.40000000e+01,
          2.00000000e+01,   1.40000000e+01],
       [  2.00000000e+00,   1.00000000e+00,   4.00000000e+00,
          6.00000000e+00,   5.00000000e+00,   5.00000000e+00,
          7.00000000e+00,   1.20000000e+01,   1.00000000e+01,
          9.00000000e+00,   1.60000000e+01,   8.00000000e+00,
          8.00000000e+00,   1.20000000e+01,   5.00000000e+00,
          1.80000000e+01,   1.20000000e+01,   1.70000000e+01,
          7.00000000e+00,   1.70000000e+01],
       [  1.00000000e+00,   3.00000000e+00,   5.00000000e+00,
          6.00000000e+00,   3.00000000e+00,   2.00000000e+00,
          1.00000000e+01,   7.00000000e+00,   5.00000000e+00,
          1.00000000e+01,   1.10000000e+01,   7.00000000e+00,
          1.00000000e+01,   1.00000000e+01,   9.00000000e+00,
          1.50000000e+01,   1.50000000e+01,   2.20000000e+01,
          1.00000000e+01,   1.40000000e+01],
       [  2.00000000e+00,   2.00000000e+00,   8.00000000e+00,
          2.00000000e+00,   3.00000000e+00,   5.00000000e+00,
          7.00000000e+00,   5.00000000e+00,   6.00000000e+00,
          9.00000000e+00,   1.70000000e+01,   1.70000000e+01,
          8.00000000e+00,   2.20000000e+01,   1.30000000e+01,
          1.20000000e+01,   1.50000000e+01,   1.70000000e+01,
          1.20000000e+01,   1.20000000e+01],
       [  2.00000000e+00,   4.00000000e+00,   6.00000000e+00,
          6.00000000e+00,   5.00000000e+00,   5.00000000e+00,
          9.00000000e+00,   8.00000000e+00,   6.00000000e+00,
          7.00000000e+00,   7.00000000e+00,   1.30000000e+01,
          1.40000000e+01,   7.00000000e+00,   1.10000000e+01,
          1.50000000e+01,   1.30000000e+01,   1.90000000e+01,
          1.50000000e+01,   8.00000000e+00],
       [  2.00000000e+00,   3.00000000e+00,   8.00000000e+00,
          6.00000000e+00,   4.00000000e+00,   4.00000000e+00,
          4.00000000e+00,   8.00000000e+00,   6.00000000e+00,
          1.10000000e+01,   3.00000000e+00,   7.00000000e+00,
          9.00000000e+00,   1.40000000e+01,   2.60000000e+01,
          1.60000000e+01,   1.30000000e+01,   1.60000000e+01,
          1.30000000e+01,   1.70000000e+01],
       [  0.00000000e+00,   3.00000000e+00,   3.00000000e+00,
          6.00000000e+00,   6.00000000e+00,   7.00000000e+00,
          5.00000000e+00,   5.00000000e+00,   8.00000000e+00,
          9.00000000e+00,   9.00000000e+00,   7.00000000e+00,
          7.00000000e+00,   1.30000000e+01,   1.10000000e+01,
          1.00000000e+01,   1.30000000e+01,   9.00000000e+00,
          1.10000000e+01,   1.40000000e+01],
       [  0.00000000e+00,   3.00000000e+00,   5.00000000e+00,
          4.00000000e+00,   3.00000000e+00,   4.00000000e+00,
          3.00000000e+00,   7.00000000e+00,   8.00000000e+00,
          8.00000000e+00,   8.00000000e+00,   1.00000000e+01,
          7.00000000e+00,   1.20000000e+01,   1.00000000e+01,
          1.70000000e+01,   1.00000000e+01,   2.30000000e+01,
          1.00000000e+01,   1.50000000e+01],
       [  1.00000000e+00,   1.00000000e+00,   4.00000000e+00,
          4.00000000e+00,   5.00000000e+00,   6.00000000e+00,
          3.00000000e+00,   7.00000000e+00,   1.00000000e+01,
          6.00000000e+00,   6.00000000e+00,   7.00000000e+00,
          8.00000000e+00,   1.10000000e+01,   1.40000000e+01,
          8.00000000e+00,   9.00000000e+00,   1.50000000e+01,
          8.00000000e+00,   1.50000000e+01],
       [  0.00000000e+00,   4.00000000e+00,   2.00000000e+00,
          6.00000000e+00,   4.00000000e+00,   5.00000000e+00,
          5.00000000e+00,   6.00000000e+00,   8.00000000e+00,
          9.00000000e+00,   9.00000000e+00,   8.00000000e+00,
          1.20000000e+01,   9.00000000e+00,   1.30000000e+01,
          1.30000000e+01,   1.10000000e+01,   9.00000000e+00,
          9.00000000e+00,   1.30000000e+01],
       [  1.00000000e+00,   3.00000000e+00,   3.00000000e+00,
          4.00000000e+00,   5.00000000e+00,   7.00000000e+00,
          1.00000000e+01,   5.00000000e+00,   7.00000000e+00,
          1.20000000e+01,   1.20000000e+01,   1.40000000e+01,
          6.00000000e+00,   1.00000000e+01,   8.00000000e+00,
          1.30000000e+01,   1.70000000e+01,   1.40000000e+01,
          1.00000000e+01,   1.80000000e+01],
       [  1.00000000e+00,   2.00000000e+00,   3.00000000e+00,
          3.00000000e+00,   6.00000000e+00,   4.00000000e+00,
          5.00000000e+00,   5.00000000e+00,   5.00000000e+00,
          9.00000000e+00,   1.50000000e+01,   1.20000000e+01,
          1.10000000e+01,   1.00000000e+01,   1.30000000e+01,
          9.00000000e+00,   1.40000000e+01,   2.00000000e+01,
          1.20000000e+01,   1.90000000e+01]])

In [ ]: