In [1]:
# Import the class
import km
# Some sample data
from sklearn import datasets
from sklearn.decomposition import PCA
data, labels = datasets.make_circles(n_samples=5000, noise=0.03, factor=0.3)
In [2]:
# Initialize
mapper = km.KeplerMapper(verbose=1)
In [3]:
# Fit to and transform the data
projected_data = mapper.fit_transform(data, projection=PCA())
In [ ]:
# Create dictionary called 'complex' with nodes, edges and meta-information
complex = mapper.map(projected_data, data, nr_cubes=10)
# Visualize it
mapper.visualize(complex, path_html="make_circles_keplermapper_output.html",
title="make_circles(n_samples=5000, noise=0.03, factor=0.5)")
In [ ]: