In [1]:
from gensim.models import Word2Vec
In [2]:
bin_file='/Users/arman/word2vec-mac/vectors.bin'
model = Word2Vec.load_word2vec_format(bin_file, binary=True)
In [3]:
model.most_similar(positive=['italy', 'paris'], negative=['rome'])
Out[3]:
In [4]:
model.most_similar(positive=['grandfather','mother'],negative=['father'])
Out[4]:
In [5]:
model.most_similar(positive=['night', 'sun'], negative=['day'])
Out[5]:
In [6]:
model.most_similar(positive=['air', 'car'], negative=['street'])
Out[6]:
In [7]:
model.most_similar(positive=['small','cold'],negative=['large'])
Out[7]:
In [8]:
model.most_similar(positive=['art','experiment'],negative=['science'])
Out[8]:
In [9]:
model.most_similar(positive=['men','car'],negative=['man'])
Out[9]:
In [ ]: