In [5]:
"""A deep MNIST classifier using convolutional layers.
See extensive documentation at
https://www.tensorflow.org/get_started/mnist/pros
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

FLAGS = None


def deepnn(x):
    """deepnn builds the graph for a deep net for classifying digits.
    Args:
    x: an input tensor with the dimensions (N_examples, 784), where 784 is the
    number of pixels in a standard MNIST image.
    Returns:
    A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
    equal to the logits of classifying the digit into one of 10 classes (the
    digits 0-9). keep_prob is a scalar placeholder for the probability of
    dropout.
    """
    # Reshape to use within a convolutional neural net.
    # Last dimension is for "features" - there is only one here, since images are
    # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
    x_image = tf.reshape(x, [-1, 28, 28, 1])

    # First convolutional layer - maps one grayscale image to 32 feature maps.
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

    # Pooling layer - downsamples by 2X.
    h_pool1 = max_pool_2x2(h_conv1)

    # Second convolutional layer -- maps 32 feature maps to 64.
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

    # Second pooling layer.
    h_pool2 = max_pool_2x2(h_conv2)

    # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
    # is down to 7x7x64 feature maps -- maps this to 1024 features.
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])

    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    # Dropout - controls the complexity of the model, prevents co-adaptation of
    # features.
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # Map the 1024 features to 10 classes, one for each digit
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])

    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    return y_conv, keep_prob


def conv2d(x, W):
    """conv2d returns a 2d convolution layer with full stride."""
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
    """max_pool_2x2 downsamples a feature map by 2X."""
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')


def weight_variable(shape):
    """weight_variable generates a weight variable of a given shape."""
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    """bias_variable generates a bias variable of a given shape."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def doit():
    # Import data
    mnist = input_data.read_data_sets(r'/tmp/tensorflow/mnist/input_data', one_hot=True)

    # Create the model
    x = tf.placeholder(tf.float32, [None, 784])

    # Define loss and optimizer
    y_ = tf.placeholder(tf.float32, [None, 10])

    # Build the graph for the deep net
    y_conv, keep_prob = deepnn(x)

    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        for i in range(5000):
            batch = mnist.train.next_batch(50)
            if i % 1000 == 0:
                train_accuracy = accuracy.eval(feed_dict={
                    x: batch[0], y_: batch[1], keep_prob: 1.0})
                print('step %d, training accuracy %g' % (i, train_accuracy))
            train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

        print('test accuracy %g' % accuracy.eval(session=sess, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

In [6]:
%timeit -r1 -n1 doit()


Extracting /tmp/tensorflow/mnist/input_data\train-images-idx3-ubyte.gz
Extracting /tmp/tensorflow/mnist/input_data\train-labels-idx1-ubyte.gz
Extracting /tmp/tensorflow/mnist/input_data\t10k-images-idx3-ubyte.gz
Extracting /tmp/tensorflow/mnist/input_data\t10k-labels-idx1-ubyte.gz
step 0, training accuracy 0.04
step 1000, training accuracy 0.94
step 2000, training accuracy 1
step 3000, training accuracy 1
step 4000, training accuracy 0.98
test accuracy 0.986
36 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

In [7]:
#36s elapsed on GTX1060 6GB, at an average 70% saturation.