In [1]:
import pandas
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
In [2]:
train = pandas.read_csv('data/titanic_train.csv')
In [3]:
train.shape
Out[3]:
In [4]:
train.columns
Out[4]:
In [5]:
train.head()
Out[5]:
In [6]:
y, X = train['Survived'], train[['Age', 'SibSp', 'Fare']].fillna(0)
In [7]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
In [8]:
lr = LogisticRegression()
In [9]:
lr.fit(X_train, y_train)
Out[9]:
In [10]:
print(accuracy_score(lr.predict(X_test), y_test))
In [11]:
from tensorflow.contrib import skflow
import random
In [12]:
random.seed(42)
In [13]:
classifier = skflow.TensorFlowLinearClassifier(n_classes=2, batch_size=128, steps=500, learning_rate=0.05)
In [14]:
classifier.fit(X_train, y_train)
Out[14]:
In [15]:
print(accuracy_score(classifier.predict(X_test), y_test))
In [ ]: