In [1]:
from pycalphad import Model, Database, equilibrium, calculate
import pycalphad.variables as v
import numpy as np
    
#dbf = Database()
#dbf.elements = ['AL', 'NI']
#dbf.add_phase('TEST', {}, [1])
#dbf.add_phase_constituents('TEST', [['AL', 'NI']])
dbf = Database('alfe_sei.TDB')

In [2]:
%time eq = equilibrium(dbf, ['AL', 'FE', 'VA'], 'B2_BCC', {v.T: 700, v.X('AL'): 1e-12, v.P: 101325},\
                       output='degree_of_ordering', pbar=False, verbose=True)


Components: AL FE VA
Phases: B2_BCC [done]
Computing initial grid [806 points, 77.4KB]
Computing convex hull [iteration 1]
progress 142818.937036 [0 conditions updated]
Global search complete
Refining equilibrium
Chem pot progress 284.173492711
Energy progress -309.464038852
Chem pot progress 2092.29043602
Energy progress 149.536577458
Chem pot progress 3134.27348085
Energy progress 77.391402103
Chem pot progress 3621.11768849
Energy progress 39.9879673401
Chem pot progress 3847.16163998
Energy progress 20.6344384516
Chem pot progress 3954.63050032
Energy progress 10.6334010746
Chem pot progress 4028.98738904
Energy progress 5.46890148956
Chem pot progress 4185.33608364
Energy progress 2.80635540335
Chem pot progress 4609.98212553
Energy progress 1.44575666573
Chem pot progress 5180.25904112
Energy progress 0.755227918784
Chem pot progress 5060.27446752
Energy progress 0.391925270433
Chem pot progress 4568.07062585
Energy progress 0.201042947079
Chem pot progress 4298.88683196
Energy progress 0.103006729722
Chem pot progress 4161.89181835
Energy progress 0.0527449587717
Chem pot progress 4088.67562726
Energy progress 0.0269922666994
Chem pot progress 4042.71727892
Energy progress 0.0138050273781
Chem pot progress 4001.25801359
Energy progress 0.00705597263732
Chem pot progress 3944.36683643
Energy progress 0.00360374815864
Chem pot progress 3846.6181524
Energy progress 0.00183882577403
Chem pot progress 3670.1690506
Energy progress 0.000937029006309
Chem pot progress 3364.00001443
Energy progress 0.000476578647067
Chem pot progress 5767.83957133
Energy progress 0.000487536461151
Chem pot progress 0.0
Energy progress 0.0
No progress
CPU times: user 12.5 s, sys: 24 ms, total: 12.6 s
Wall time: 12.6 s

In [3]:
eq


Out[3]:
<xarray.Dataset>
Dimensions:             (P: 1, T: 1, X_AL: 1, component: 2, internal_dof: 5, vertex: 2)
Coordinates:
  * P                   (P) float64 1.013e+05
  * T                   (T) float64 700.0
  * X_AL                (X_AL) float64 1e-09
  * vertex              (vertex) int64 0 1
  * component           (component) object 'AL' 'FE'
  * internal_dof        (internal_dof) int64 0 1 2 3 4
Data variables:
    NP                  (P, T, X_AL, vertex) float64 1.0 nan
    MU                  (P, T, X_AL, component) float64 -2.282e+05 -2.447e+04
    GM                  (P, T, X_AL) float64 -2.447e+04
    X                   (P, T, X_AL, vertex, component) float64 1e-09 1.0 ...
    Y                   (P, T, X_AL, vertex, internal_dof) float64 1e-09 1.0 ...
    Phase               (P, T, X_AL, vertex) object 'B2_BCC' ''
    degree_of_ordering  (P, T, X_AL, vertex) float64 4.136e-16 nan
Attributes:
    hull_iterations: 1
    engine: pycalphad 0.3.2+39.gec47451.dirty
    solve_iterations: 23
    created: 2016-04-10 16:40:14.774088

In [4]:
eq.X


Out[4]:
<xarray.DataArray 'X' (P: 1, T: 1, X_AL: 1, vertex: 2, component: 2)>
array([[[[[  1.00000000e-09,   9.99999999e-01],
          [             nan,              nan]]]]])
Coordinates:
  * P          (P) float64 1.013e+05
  * T          (T) float64 700.0
  * X_AL       (X_AL) float64 1e-09
  * vertex     (vertex) int64 0 1
  * component  (component) object 'AL' 'FE'

In [5]:
eq.Y


Out[5]:
<xarray.DataArray 'Y' (P: 1, T: 1, X_AL: 1, vertex: 2, internal_dof: 5)>
array([[[[[  1.00000000e-09,   9.99999999e-01,   1.00000000e-09,
             9.99999999e-01,   1.00000000e+00],
          [             nan,              nan,              nan,
                        nan,              nan]]]]])
Coordinates:
  * P             (P) float64 1.013e+05
  * T             (T) float64 700.0
  * X_AL          (X_AL) float64 1e-09
  * vertex        (vertex) int64 0 1
  * internal_dof  (internal_dof) int64 0 1 2 3 4

In [ ]:


In [ ]: