In [6]:
import numpy as np
from pycalphad import CompiledModel, Model, Database, calculate, equilibrium
import pycalphad.variables as v
import pstats, cProfile
#dbf = Database('2016-08-10-AlGdMgand18RLPSO-for 3d plot.tdb')
dbf = Database('alfe_sei.TDB')
models = {key: CompiledModel(dbf, ['AL', 'FE', 'VA'], key) for key in dbf.phases.keys()}
In [7]:
#cProfile.runctx("equilibrium(dbf, ['AL', 'GD', 'MG', 'VA'], 'LPSO18R', {v.T: 300, v.P: 101325, v.X('AL'): 0.05, v.X('GD'): 0.1})", globals(), locals(), "Profile.prof")
%time cProfile.runctx("equilibrium(dbf, ['AL', 'FE', 'VA'], ['B2_BCC', 'AL13FE4'], {v.T: 700, v.X('AL'): (0,1,0.02), v.P: 101325}, model=models)", globals(), locals(), "Profile.prof")
s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats()
CPU times: user 11.9 s, sys: 33 ms, total: 11.9 s
Wall time: 11.9 s
Thu Mar 30 16:41:18 2017 Profile.prof
4248235 function calls (4246589 primitive calls) in 10.906 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
19952 1.395 0.000 10.152 0.001 compiled_model.pyx:758(eval_energy_gradient)
606308 1.249 0.000 1.249 0.000 compiled_model.pyx:281(_eval_rk_matrix)
129274 0.948 0.000 0.948 0.000 compiled_model.pyx:305(_eval_rk_matrix_gradient)
36231 0.776 0.000 3.247 0.000 compiled_model.pyx:551(eval_energy)
34847 0.714 0.000 5.270 0.000 compiled_model.pyx:651(_eval_energy_gradient)
326889 0.650 0.000 0.920 0.000 stringsource:341(__cinit__)
67015 0.491 0.000 0.843 0.000 compiled_model.pyx:364(_eval_energy)
119236 0.329 0.000 0.783 0.000 stringsource:395(__getitem__)
306873 0.321 0.000 0.321 0.000 stringsource:793(slice_memviewslice)
45679 0.282 0.000 0.548 0.000 compiled_model.pyx:496(_compute_disordered_dof)
50666 0.268 0.000 0.514 0.000 shape_base.py:9(atleast_1d)
326887 0.239 0.000 0.239 0.000 stringsource:368(__dealloc__)
326889 0.237 0.000 0.237 0.000 stringsource:294(align_pointer)
25 0.233 0.009 11.370 0.455 eqsolver.pyx:334(_solve_eq_at_conditions)
273080 0.226 0.000 0.226 0.000 compiled_model.pyx:32(_intsum)
45679 0.196 0.000 0.361 0.000 compiled_model.pyx:529(_compute_ordered_dof)
119236 0.165 0.000 0.282 0.000 stringsource:385(get_item_pointer)
14895 0.150 0.000 0.630 0.000 compiled_model.pyx:432(_eval_disordered_energy)
762 0.133 0.000 10.492 0.014 eqsolver.pyx:274(_build_multiphase_system)
119236 0.116 0.000 0.116 0.000 stringsource:896(pybuffer_index)
54599 0.116 0.000 0.157 0.000 numeric.py:484(asanyarray)
119236 0.104 0.000 0.104 0.000 stringsource:652(_unellipsify)
109262 0.085 0.000 0.085 0.000 compiled_model.pyx:23(_sum)
34847 0.082 0.000 0.114 0.000 stringsource:120(__cinit__)
93637/93329 0.081 0.000 0.098 0.000 {built-in method numpy.core.multiarray.array}
111498/110859 0.071 0.000 0.072 0.000 {built-in method builtins.len}
29794 0.069 0.000 0.090 0.000 numeric.py:535(ascontiguousarray)
104322 0.068 0.000 0.068 0.000 stringsource:965(convert_item_to_object)
762 0.055 0.000 0.090 0.000 eqsolver.pyx:150(_compute_constraints)
1219 0.047 0.000 0.228 0.000 dataset.py:461(_construct_dataarray)
14899 0.042 0.000 0.074 0.000 stringsource:985(memoryview_fromslice)
7171 0.042 0.000 0.042 0.000 {method 'reduce' of 'numpy.ufunc' objects}
762 0.040 0.000 0.086 0.000 eqsolver.pyx:41(remove_degenerate_phases)
55381 0.040 0.000 0.040 0.000 {method 'append' of 'list' objects}
25591 0.039 0.000 0.071 0.000 stringsource:643(memoryview_cwrapper)
762 0.035 0.000 0.071 0.000 linalg.py:296(solve)
34847 0.033 0.000 0.033 0.000 stringsource:1171(fill_contig_strides_array)
34847 0.033 0.000 0.033 0.000 stringsource:183(__getbuffer__)
44689 0.029 0.000 0.029 0.000 stringsource:591(__len__)
8396 0.028 0.000 0.077 0.000 coordinates.py:142(<genexpr>)
15456 0.025 0.000 0.038 0.000 _collections_abc.py:675(__iter__)
13183 0.021 0.000 0.031 0.000 dataset.py:274(variables)
27239 0.020 0.000 0.020 0.000 {built-in method builtins.isinstance}
26209 0.018 0.000 0.018 0.000 utils.py:264(__getitem__)
25591 0.017 0.000 0.017 0.000 stringsource:649(memoryview_check)
21395 0.016 0.000 0.016 0.000 coordinates.py:136(_names)
8396 0.015 0.000 0.122 0.000 coordinates.py:36(__iter__)
8139/7831 0.015 0.000 0.045 0.000 numeric.py:414(asarray)
1222 0.015 0.000 0.099 0.000 coordinates.py:140(variables)
7394 0.013 0.000 0.018 0.000 index_tricks.py:650(__getitem__)
1524 0.012 0.000 0.030 0.000 copy.py:137(deepcopy)
2977 0.011 0.000 0.049 0.000 fromnumeric.py:1900(any)
14635 0.010 0.000 0.010 0.000 utils.py:261(__init__)
14535 0.010 0.000 0.010 0.000 variable.py:329(dims)
14897 0.010 0.000 0.010 0.000 stringsource:962(__dealloc__)
763 0.009 0.000 0.054 0.000 common.py:186(__getattr__)
1225 0.009 0.000 0.015 0.000 indexing.py:10(expanded_indexer)
50 0.009 0.000 0.009 0.000 {pycalphad.core.hyperplane.hyperplane}
8068/8066 0.009 0.000 0.009 0.000 common.py:196(__setattr__)
7407/7401 0.008 0.000 0.009 0.000 {built-in method builtins.hasattr}
10340 0.008 0.000 0.008 0.000 {built-in method builtins.issubclass}
1517 0.007 0.000 0.014 0.000 dataarray.py:154(__init__)
2979 0.006 0.000 0.029 0.000 {method 'any' of 'numpy.ndarray' objects}
1524 0.006 0.000 0.008 0.000 copy.py:253(_keep_alive)
762 0.006 0.000 0.013 0.000 nanfunctions.py:33(_replace_nan)
2482 0.006 0.000 0.012 0.000 utils.py:360(ndim)
762 0.006 0.000 0.014 0.000 linalg.py:139(_commonType)
175 0.005 0.000 0.129 0.001 dataset.py:869(isel)
3546/3543 0.005 0.000 0.005 0.000 {built-in method builtins.iter}
350 0.005 0.000 0.015 0.000 index_tricks.py:28(ix_)
669 0.005 0.000 0.010 0.000 variable.py:106(as_compatible_data)
7431 0.005 0.000 0.005 0.000 stringsource:507(__getbuffer__)
1244 0.005 0.000 0.323 0.000 dataset.py:510(__getitem__)
264 0.005 0.000 0.012 0.000 distance.py:1400(squareform)
2979 0.005 0.000 0.023 0.000 _methods.py:37(_any)
2144 0.005 0.000 0.009 0.000 utils.py:137(is_dict_like)
600 0.004 0.000 0.103 0.000 variable.py:516(isel)
329 0.004 0.000 0.014 0.000 dataset.py:66(calculate_dimensions)
1524 0.004 0.000 0.009 0.000 linalg.py:106(_makearray)
350 0.004 0.000 0.057 0.000 indexing.py:70(orthogonal_indexer)
1026 0.004 0.000 0.012 0.000 fromnumeric.py:2200(amax)
813 0.004 0.000 0.012 0.000 fromnumeric.py:1743(sum)
5253 0.004 0.000 0.004 0.000 {method 'get' of 'dict' objects}
264 0.004 0.000 0.012 0.000 distance.py:978(pdist)
2450 0.004 0.000 0.006 0.000 utils.py:267(__iter__)
757 0.004 0.000 0.014 0.000 coordinates.py:13(__getitem__)
762 0.004 0.000 0.006 0.000 fromnumeric.py:1161(squeeze)
1400 0.004 0.000 0.013 0.000 indexing.py:83(all_full_slices)
575 0.004 0.000 0.073 0.000 indexing.py:392(_convert_key)
700/350 0.003 0.000 0.016 0.000 indexing.py:82(full_slices_unselected)
823 0.003 0.000 0.003 0.000 {built-in method numpy.core.multiarray.copyto}
2900 0.003 0.000 0.007 0.000 indexing.py:84(<genexpr>)
450 0.003 0.000 0.048 0.000 variable.py:1093(__getitem__)
2288 0.003 0.000 0.005 0.000 linalg.py:111(isComplexType)
3881 0.003 0.000 0.004 0.000 {built-in method builtins.getattr}
1300 0.003 0.000 0.006 0.000 indexing.py:45(canonicalize)
762 0.003 0.000 0.013 0.000 fromnumeric.py:1987(all)
4572 0.003 0.000 0.003 0.000 {built-in method builtins.id}
762 0.003 0.000 0.003 0.000 {method '__deepcopy__' of 'numpy.generic' objects}
1788 0.003 0.000 0.012 0.000 _methods.py:25(_amax)
150 0.003 0.000 0.049 0.000 indexing.py:412(__setitem__)
1040 0.003 0.000 0.006 0.000 numerictypes.py:728(issubdtype)
762 0.003 0.000 0.004 0.000 linalg.py:209(_assertNdSquareness)
762 0.003 0.000 0.026 0.000 nanfunctions.py:448(nansum)
2692 0.003 0.000 0.005 0.000 variable.py:246(shape)
150 0.003 0.000 0.045 0.000 variable.py:355(__getitem__)
1954 0.003 0.000 0.003 0.000 coordinates.py:186(_names)
1352 0.003 0.000 0.004 0.000 dataarray.py:480(coords)
425 0.003 0.000 0.046 0.000 indexing.py:408(__getitem__)
1591 0.003 0.000 0.011 0.000 _methods.py:31(_sum)
326 0.003 0.000 0.005 0.000 dataset.py:335(_construct_direct)
656 0.003 0.000 0.019 0.000 variable.py:213(__init__)
773 0.003 0.000 0.003 0.000 {method 'astype' of 'numpy.ndarray' objects}
150 0.002 0.000 0.098 0.001 equilibrium.py:71(<dictcomp>)
1524 0.002 0.000 0.004 0.000 linalg.py:124(_realType)
1012 0.002 0.000 0.006 0.000 pycompat.py:11(iteritems)
656 0.002 0.000 0.006 0.000 variable.py:335(_parse_dimensions)
1425 0.002 0.000 0.003 0.000 dataset.py:911(<genexpr>)
1500 0.002 0.000 0.003 0.000 utils.py:141(is_full_slice)
1236 0.002 0.000 0.003 0.000 dataset.py:631(coords)
1409 0.002 0.000 0.008 0.000 {built-in method builtins.all}
1478 0.002 0.000 0.005 0.000 <frozen importlib._bootstrap>:996(_handle_fromlist)
750 0.002 0.000 0.006 0.000 indexing.py:369(orthogonally_indexable)
750 0.002 0.000 0.007 0.000 variable.py:349(_item_key_to_tuple)
1524 0.002 0.000 0.002 0.000 {method 'squeeze' of 'numpy.generic' objects}
762 0.002 0.000 0.002 0.000 {method 'clip' of 'numpy.ndarray' objects}
1 0.002 0.002 0.046 0.046 lower_convex_hull.py:340(lower_convex_hull)
762 0.002 0.000 0.003 0.000 stringsource:240(array_cwrapper)
1650 0.002 0.000 0.009 0.000 indexing.py:63(<genexpr>)
350 0.002 0.000 0.015 0.000 indexing.py:40(canonicalize_indexer)
1225 0.002 0.000 0.003 0.000 _collections_abc.py:611(items)
1219 0.002 0.000 0.003 0.000 utils.py:432(hashable)
2 0.002 0.001 0.003 0.002 halton.py:87(halton)
857 0.002 0.000 0.007 0.000 {built-in method builtins.any}
1367 0.002 0.000 0.003 0.000 contextlib.py:219(__exit__)
762 0.002 0.000 0.002 0.000 linalg.py:198(_assertRankAtLeast2)
528 0.002 0.000 0.003 0.000 numerictypes.py:603(obj2sctype)
300 0.002 0.000 0.075 0.000 dataarray.py:417(__getitem__)
150 0.002 0.000 0.007 0.000 indexing.py:471(__getitem__)
1300 0.002 0.000 0.004 0.000 indexing.py:106(<genexpr>)
765 0.002 0.000 0.008 0.000 {method 'all' of 'numpy.ndarray' objects}
602 0.002 0.000 0.006 0.000 dataarray.py:441(_attr_sources)
1 0.002 0.002 0.218 0.218 equilibrium.py:60(_merge_property_slices)
150 0.002 0.000 0.005 0.000 dataarray.py:234(_replace_maybe_drop_dims)
622 0.002 0.000 0.007 0.000 variable.py:306(values)
602 0.002 0.000 0.003 0.000 dataarray.py:455(attrs)
350 0.002 0.000 0.003 0.000 indexing.py:80(<listcomp>)
614 0.002 0.000 0.009 0.000 dataarray.py:381(values)
1040 0.002 0.000 0.002 0.000 numerictypes.py:660(issubclass_)
1150 0.002 0.000 0.002 0.000 indexing.py:394(<genexpr>)
767 0.002 0.000 0.002 0.000 variable.py:273(_data_cached)
1971 0.001 0.000 0.001 0.000 dataarray.py:345(variable)
762 0.001 0.000 0.001 0.000 linalg.py:101(get_linalg_error_extobj)
540 0.001 0.000 0.001 0.000 {built-in method numpy.core.multiarray.zeros}
966 0.001 0.000 0.001 0.000 {method 'reshape' of 'numpy.ndarray' objects}
629 0.001 0.000 0.002 0.000 dataset.py:74(<genexpr>)
950 0.001 0.000 0.002 0.000 indexing.py:103(maybe_expand_slice)
1705 0.001 0.000 0.001 0.000 _collections_abc.py:631(__init__)
762 0.001 0.000 0.003 0.000 fromnumeric.py:1686(clip)
762 0.001 0.000 0.001 0.000 {method '__deepcopy__' of 'numpy.ndarray' objects}
622 0.001 0.000 0.003 0.000 variable.py:168(_as_array_or_item)
765 0.001 0.000 0.006 0.000 _methods.py:40(_all)
528 0.001 0.000 0.006 0.000 distance.py:121(_copy_array_if_base_present)
1352 0.001 0.000 0.001 0.000 coordinates.py:183(__init__)
150 0.001 0.000 0.010 0.000 dataarray.py:283(_to_dataset_whole)
600 0.001 0.000 0.002 0.000 variable.py:533(<listcomp>)
775 0.001 0.000 0.002 0.000 variable.py:351(<genexpr>)
575 0.001 0.000 0.003 0.000 indexing.py:386(__init__)
1367 0.001 0.000 0.001 0.000 contextlib.py:213(__init__)
1236 0.001 0.000 0.001 0.000 coordinates.py:133(__init__)
775 0.001 0.000 0.002 0.000 variable.py:374(<genexpr>)
150 0.001 0.000 0.005 0.000 dataarray.py:410(_item_key_to_dict)
669 0.001 0.000 0.002 0.000 variable.py:93(_maybe_wrap_data)
45 0.001 0.000 0.004 0.000 function_base.py:3517(_median)
300 0.001 0.000 0.004 0.000 dataarray.py:225(_replace)
175 0.001 0.000 0.013 0.000 dataset.py:357(_replace_vars_and_dims)
600 0.001 0.000 0.006 0.000 variable.py:278(_indexable_data)
609 0.001 0.000 0.002 0.000 coordinates.py:45(__contains__)
150 0.001 0.000 0.055 0.000 variable.py:385(__setitem__)
1 0.001 0.001 11.887 11.887 equilibrium.py:158(equilibrium)
818 0.001 0.000 0.001 0.000 {built-in method builtins.max}
925 0.001 0.000 0.001 0.000 dataset.py:284(attrs)
631 0.001 0.000 0.003 0.000 indexing.py:466(shape)
300 0.001 0.000 0.002 0.000 utils.py:184(to_0d_array)
631 0.001 0.000 0.001 0.000 base.py:491(__len__)
1367 0.001 0.000 0.001 0.000 contextlib.py:216(__enter__)
1390 0.001 0.000 0.001 0.000 stringsource:545(__get__)
264 0.001 0.000 0.003 0.000 six.py:130(callable)
425 0.001 0.000 0.003 0.000 indexing.py:399(_ensure_ndarray)
150 0.001 0.000 0.062 0.000 dataarray.py:601(isel)
792 0.001 0.000 0.001 0.000 six.py:131(<genexpr>)
301 0.001 0.000 0.006 0.000 common.py:131(__array__)
1247 0.001 0.000 0.001 0.000 {built-in method builtins.hash}
264 0.001 0.000 0.004 0.000 numerictypes.py:698(issubsctype)
480 0.001 0.000 0.001 0.000 _collections_abc.py:607(keys)
450 0.001 0.000 0.002 0.000 _collections_abc.py:649(__contains__)
528 0.001 0.000 0.001 0.000 distance.py:141(_convert_to_double)
925 0.001 0.000 0.001 0.000 utils.py:387(shape)
1225 0.001 0.000 0.001 0.000 {method 'extend' of 'list' objects}
300 0.001 0.000 0.001 0.000 dataarray.py:239(<genexpr>)
1139 0.001 0.000 0.001 0.000 eqsolver.pyx:61(lambda)
15 0.001 0.000 0.001 0.000 {built-in method numpy.core.multiarray.dot}
230 0.001 0.000 0.001 0.000 dataset.py:296(dims)
175 0.001 0.000 0.002 0.000 dataset.py:899(<listcomp>)
150 0.001 0.000 0.056 0.000 dataarray.py:431(__setitem__)
300 0.001 0.000 0.001 0.000 dataarray.py:400(dims)
617 0.001 0.000 0.001 0.000 variable.py:401(attrs)
1032 0.001 0.000 0.001 0.000 {method 'items' of 'collections.OrderedDict' objects}
150 0.001 0.000 0.003 0.000 base.py:1406(__getitem__)
762 0.001 0.000 0.001 0.000 stringsource:1447(format_from_typeinfo)
300 0.001 0.000 0.001 0.000 numeric.py:2064(isscalar)
172 0.001 0.000 0.006 0.000 variable.py:1082(__init__)
604 0.001 0.000 0.001 0.000 {method 'split' of 'str' objects}
150 0.001 0.000 0.007 0.000 dataset.py:352(_from_vars_and_coord_names)
771 0.001 0.000 0.001 0.000 {built-in method builtins.min}
270 0.001 0.000 0.001 0.000 {method 'copy' of 'numpy.ndarray' objects}
100 0.001 0.000 0.001 0.000 eqsolver.pyx:32(__cinit__)
175 0.001 0.000 0.001 0.000 dataset.py:904(<listcomp>)
762 0.001 0.000 0.001 0.000 {method '__array_prepare__' of 'numpy.ndarray' objects}
792 0.001 0.000 0.001 0.000 {method 'lower' of 'str' objects}
9 0.001 0.000 0.001 0.000 numeric.py:1015(outer)
150 0.001 0.000 0.001 0.000 {method 'take' of 'numpy.ndarray' objects}
762 0.001 0.000 0.001 0.000 stringsource:209(__dealloc__)
2 0.001 0.000 0.001 0.000 calculate.py:180(<listcomp>)
150 0.000 0.000 0.003 0.000 dataarray.py:266(_from_temp_dataset)
135 0.000 0.000 0.000 0.000 variable.py:409(attrs)
72 0.000 0.000 0.001 0.000 base.py:334(_simple_new)
45 0.000 0.000 0.001 0.000 _methods.py:53(_mean)
2 0.000 0.000 0.004 0.002 utils.py:114(point_sample)
45 0.000 0.000 0.000 0.000 {method 'partition' of 'numpy.ndarray' objects}
233 0.000 0.000 0.001 0.000 utils.py:273(__contains__)
2 0.000 0.000 0.006 0.003 calculate.py:143(_sample_phase_constitution)
150 0.000 0.000 0.002 0.000 dataarray.py:365(ndim)
264 0.000 0.000 0.000 0.000 {built-in method scipy.spatial._distance_wrap.pdist_chebyshev_wrap}
2 0.000 0.000 0.153 0.077 calculate.py:217(_compute_phase_values)
22 0.000 0.000 0.000 0.000 {built-in method numpy.core.multiarray.concatenate}
208 0.000 0.000 0.001 0.000 _collections_abc.py:652(__iter__)
1 0.000 0.000 11.888 11.888 <string>:1(<module>)
264 0.000 0.000 0.000 0.000 {built-in method scipy.spatial._distance_wrap.to_squareform_from_vector_wrap}
460 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects}
150 0.000 0.000 0.010 0.000 dataarray.py:262(_to_temp_dataset)
58 0.000 0.000 0.002 0.000 base.py:371(_shallow_copy)
398 0.000 0.000 0.000 0.000 {built-in method __new__ of type object at 0x7f32f18b3360}
45 0.000 0.000 0.005 0.000 function_base.py:3369(_ureduce)
65 0.000 0.000 0.000 0.000 {built-in method numpy.core.multiarray.arange}
370 0.000 0.000 0.000 0.000 basic.py:102(__hash__)
161 0.000 0.000 0.000 0.000 common.py:181(_attr_sources)
14 0.000 0.000 0.002 0.000 base.py:142(__new__)
180 0.000 0.000 0.000 0.000 dataset.py:113(<genexpr>)
71 0.000 0.000 0.000 0.000 common.py:357(_get_dtype_type)
35 0.000 0.000 0.002 0.000 variable.py:26(as_variable)
60 0.000 0.000 0.000 0.000 base.py:606(_get_attributes_dict)
45 0.000 0.000 0.001 0.000 fromnumeric.py:559(partition)
176 0.000 0.000 0.000 0.000 dataset.py:281(_attrs_copy)
25 0.000 0.000 0.001 0.000 equilibrium.py:66(<listcomp>)
230 0.000 0.000 0.000 0.000 utils.py:291(__init__)
50 0.000 0.000 0.000 0.000 {built-in method numpy.core.multiarray.ravel_multi_index}
64 0.000 0.000 0.002 0.000 indexing.py:438(__init__)
63 0.000 0.000 0.000 0.000 dtypes.py:74(is_dtype)
255 0.000 0.000 0.000 0.000 indexing.py:452(dtype)
25 0.000 0.000 0.001 0.000 equilibrium.py:340(<listcomp>)
179 0.000 0.000 0.000 0.000 {pandas.lib.isscalar}
4 0.000 0.000 0.000 0.000 merge.py:97(merge_variables)
45 0.000 0.000 0.001 0.000 fromnumeric.py:2843(mean)
45 0.000 0.000 0.005 0.000 function_base.py:3429(median)
152 0.000 0.000 0.000 0.000 {method 'copy' of 'collections.OrderedDict' objects}
64 0.000 0.000 0.002 0.000 utils.py:41(safe_cast_to_index)
1 0.000 0.000 0.168 0.168 calculate.py:343(calculate)
72 0.000 0.000 0.000 0.000 __init__.py:175(iteritems)
150 0.000 0.000 0.000 0.000 {method 'pop' of 'collections.OrderedDict' objects}
225 0.000 0.000 0.000 0.000 utils.py:309(__contains__)
176 0.000 0.000 0.000 0.000 {method 'copy' of 'set' objects}
20 0.000 0.000 0.000 0.000 symbol.py:141(assumptions0)
76 0.000 0.000 0.000 0.000 {built-in method numpy.core.multiarray.empty}
57 0.000 0.000 0.000 0.000 numeric.py:148(ones)
54 0.000 0.000 0.001 0.000 {built-in method builtins.sorted}
2 0.000 0.000 0.001 0.000 utils.py:263(endmember_matrix)
44 0.000 0.000 0.000 0.000 abc.py:178(__instancecheck__)
9 0.000 0.000 0.000 0.000 stride_tricks.py:57(_broadcast_to)
160 0.000 0.000 0.000 0.000 symbol.py:143(<genexpr>)
45 0.000 0.000 0.000 0.000 _methods.py:43(_count_reduce_items)
6 0.000 0.000 0.000 0.000 symbol.py:55(_sanitize)
45 0.000 0.000 0.000 0.000 numeric.py:1404(rollaxis)
60 0.000 0.000 0.000 0.000 base.py:608(<listcomp>)
4 0.000 0.000 0.004 0.001 merge.py:385(merge_core)
150 0.000 0.000 0.000 0.000 dataarray.py:335(name)
4 0.000 0.000 0.000 0.000 merge.py:284(_align_for_merge)
4 0.000 0.000 0.003 0.001 merge.py:161(expand_variable_dicts)
25 0.000 0.000 0.000 0.000 common.py:194(is_bool_indexer)
4 0.000 0.000 0.001 0.000 variable.py:911(concat)
85 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects}
1 0.000 0.000 11.888 11.888 {built-in method builtins.exec}
42 0.000 0.000 0.000 0.000 indexing.py:288(shape)
53 0.000 0.000 0.000 0.000 generic.py:7(_check)
72 0.000 0.000 0.000 0.000 base.py:485(_reset_identity)
4 0.000 0.000 0.000 0.000 merge.py:241(coerce_pandas_values)
10 0.000 0.000 0.001 0.000 basic.py:278(__eq__)
29 0.000 0.000 0.000 0.000 indexing.py:307(__array__)
45 0.000 0.000 0.000 0.000 {method 'flatten' of 'numpy.ndarray' objects}
20 0.000 0.000 0.000 0.000 symbol.py:137(_hashable_content)
66 0.000 0.000 0.000 0.000 _weakrefset.py:70(__contains__)
8 0.000 0.000 0.000 0.000 common.py:365(_asarray_tuplesafe)
33 0.000 0.000 0.000 0.000 common.py:333(_get_dtype)
1 0.000 0.000 0.000 0.000 shape_base.py:378(array_split)
1 0.000 0.000 0.006 0.006 calculate.py:28(_fast_concat)
24/2 0.000 0.000 0.000 0.000 cache.py:14(fhash)
35 0.000 0.000 0.000 0.000 merge.py:143(<listcomp>)
11 0.000 0.000 0.000 0.000 numeric.py:28(__new__)
25 0.000 0.000 0.000 0.000 indexing.py:304(__getitem__)
4 0.000 0.000 0.000 0.000 {built-in method pycalphad.core.phase_rec.PhaseRecord_from_compiledmodel}
15 0.000 0.000 0.001 0.000 calculate.py:73(ensure_common_dims)
30 0.000 0.000 0.000 0.000 common.py:102(is_categorical_dtype)
8 0.000 0.000 0.000 0.000 printer.py:235(_print)
43 0.000 0.000 0.000 0.000 merge.py:290(is_alignable)
15 0.000 0.000 0.002 0.000 variable.py:1088(_data_cached)
26 0.000 0.000 0.000 0.000 dataset.py:638(data_vars)
8 0.000 0.000 0.000 0.000 printer.py:196(__init__)
5 0.000 0.000 0.000 0.000 {method 'unique' of 'pandas.hashtable.PyObjectHashTable' objects}
21 0.000 0.000 0.000 0.000 common.py:93(is_timedelta64_dtype)
12 0.000 0.000 0.000 0.000 {built-in method builtins.sum}
31 0.000 0.000 0.000 0.000 base.py:522(values)
8 0.000 0.000 0.000 0.000 base.py:955(set_names)
21 0.000 0.000 0.000 0.000 indexing.py:292(dtype)
4 0.000 0.000 0.005 0.001 dataset.py:159(__init__)
8 0.000 0.000 0.002 0.000 variable.py:1162(to_index)
21 0.000 0.000 0.000 0.000 common.py:81(is_datetime64_dtype)
2 0.000 0.000 0.000 0.000 numeric.py:290(equals)
4 0.000 0.000 0.000 0.000 merge.py:206(determine_coords)
2 0.000 0.000 0.007 0.003 cache.py:123(wrapper)
64 0.000 0.000 0.000 0.000 {method 'keys' of 'collections.OrderedDict' objects}
5 0.000 0.000 0.002 0.000 variable.py:1243(concat)
3 0.000 0.000 0.000 0.000 function_base.py:4096(<listcomp>)
35 0.000 0.000 0.000 0.000 merge.py:39(unique_variable)
9 0.000 0.000 0.000 0.000 calculate.py:50(insert_result_variable)
7 0.000 0.000 0.000 0.000 twodim_base.py:192(eye)
1 0.000 0.000 0.000 0.000 equilibrium.py:54(<listcomp>)
4 0.000 0.000 0.004 0.001 dataset.py:224(_set_init_vars_and_dims)
12 0.000 0.000 0.000 0.000 combine.py:186(<genexpr>)
26/18 0.000 0.000 0.000 0.000 cache.py:23(<genexpr>)
11 0.000 0.000 0.000 0.000 variable.py:320(to_coord)
4 0.000 0.000 0.000 0.000 alignment.py:28(align)
26 0.000 0.000 0.000 0.000 dataset.py:112(__iter__)
16 0.000 0.000 0.000 0.000 inference.py:53(is_list_like)
2 0.000 0.000 0.000 0.000 function_base.py:9(linspace)
29 0.000 0.000 0.000 0.000 {pandas.lib.values_from_object}
14 0.000 0.000 0.000 0.000 common.py:170(is_datetime64_any_dtype)
16 0.000 0.000 0.000 0.000 {method 'sum' of 'numpy.ndarray' objects}
23 0.000 0.000 0.000 0.000 common.py:89(is_datetime64tz_dtype)
26 0.000 0.000 0.000 0.000 fromnumeric.py:456(swapaxes)
11 0.000 0.000 0.000 0.000 utils.py:158(is_scalar)
3 0.000 0.000 0.000 0.000 function_base.py:3979(meshgrid)
5 0.000 0.000 0.000 0.000 algorithms.py:108(_unique_generic)
35 0.000 0.000 0.000 0.000 merge.py:92(__missing__)
7 0.000 0.000 0.000 0.000 utils.py:208(unpack_condition)
39 0.000 0.000 0.000 0.000 stride_tricks.py:62(<genexpr>)
50 0.000 0.000 0.000 0.000 {method 'iternext' of 'numpy.nditer' objects}
31 0.000 0.000 0.000 0.000 {method 'view' of 'numpy.ndarray' objects}
13 0.000 0.000 0.000 0.000 common.py:135(is_dtype_equal)
3 0.000 0.000 0.000 0.000 {pandas.lib.infer_dtype}
9 0.000 0.000 0.000 0.000 {method 'astype' of 'numpy.generic' objects}
6 0.000 0.000 0.000 0.000 symbol.py:89(__new__)
6 0.000 0.000 0.000 0.000 variables.py:12(__new__)
26 0.000 0.000 0.000 0.000 dataset.py:109(__init__)
10 0.000 0.000 0.000 0.000 dtypes.py:347(is_dtype)
5 0.000 0.000 0.000 0.000 variable.py:1143(copy)
5 0.000 0.000 0.000 0.000 algorithms.py:762(_hashtable_algo)
2 0.000 0.000 0.000 0.000 missing.py:245(array_equivalent)
5 0.000 0.000 0.000 0.000 indexing.py:456(__array__)
4 0.000 0.000 0.004 0.001 merge.py:377(merge_data_and_coords)
4 0.000 0.000 0.000 0.000 shape_base.py:61(atleast_2d)
30 0.000 0.000 0.000 0.000 equilibrium.py:25(delayed)
13 0.000 0.000 0.000 0.000 {method 'update' of 'set' objects}
5 0.000 0.000 0.000 0.000 calculate.py:89(<listcomp>)
2 0.000 0.000 0.000 0.000 utils.py:283(<listcomp>)
1 0.000 0.000 0.000 0.000 function_base.py:4116(<listcomp>)
7 0.000 0.000 0.000 0.000 common.py:264(needs_i8_conversion)
14 0.000 0.000 0.000 0.000 dtypes.py:132(construct_from_string)
4 0.000 0.000 0.000 0.000 missing.py:120(_isnull_ndarraylike)
4 0.000 0.000 0.003 0.001 combine.py:156(differs)
9 0.000 0.000 0.000 0.000 stride_tricks.py:77(broadcast_to)
1 0.000 0.000 0.003 0.003 combine.py:143(_calc_concat_over)
22 0.000 0.000 0.000 0.000 {method 'ravel' of 'numpy.ndarray' objects}
8 0.000 0.000 0.000 0.000 str.py:732(sstr)
1 0.000 0.000 0.000 0.000 concat.py:24(get_dtype_kinds)
5 0.000 0.000 0.000 0.000 basic.py:394(__str__)
3 0.000 0.000 0.000 0.000 fromnumeric.py:2433(prod)
36 0.000 0.000 0.000 0.000 {method 'pop' of 'dict' objects}
1 0.000 0.000 0.001 0.001 variable.py:1105(concat)
10 0.000 0.000 0.000 0.000 _collections_abc.py:592(get)
26 0.000 0.000 0.000 0.000 {method 'swapaxes' of 'numpy.ndarray' objects}
7 0.000 0.000 0.000 0.000 utils.py:303(unpack_kwarg)
5 0.000 0.000 0.000 0.000 variable.py:85(default_index_coordinate)
4 0.000 0.000 0.000 0.000 missing.py:48(_isnull_new)
4 0.000 0.000 0.003 0.001 variable.py:982(equals)
4 0.000 0.000 0.002 0.001 variable.py:1155(_data_equals)
8 0.000 0.000 0.003 0.000 combine.py:161(<genexpr>)
4 0.000 0.000 0.000 0.000 numeric.py:254(full)
8 0.000 0.000 0.000 0.000 variable.py:258(data)
1 0.000 0.000 0.000 0.000 equilibrium.py:49(_adjust_conditions)
3 0.000 0.000 0.000 0.000 variables.py:20(__new__)
5 0.000 0.000 0.000 0.000 algorithms.py:89(unique)
4 0.000 0.000 0.000 0.000 calculate.py:307(<listcomp>)
1 0.000 0.000 0.000 0.000 equilibrium.py:331(<listcomp>)
2 0.000 0.000 0.000 0.000 base.py:1643(equals)
2 0.000 0.000 0.000 0.000 linalg.py:1976(norm)
9 0.000 0.000 0.000 0.000 function_base.py:48(iterable)
2 0.000 0.000 0.000 0.000 calculate.py:278(<listcomp>)
2 0.000 0.000 0.003 0.001 combine.py:148(process_subset_opt)
6 0.000 0.000 0.000 0.000 cache.py:91(wrapper)
8 0.000 0.000 0.000 0.000 printer.py:231(doprint)
10 0.000 0.000 0.000 0.000 common.py:98(is_period_dtype)
9 0.000 0.000 0.000 0.000 variables.py:38(__str__)
3 0.000 0.000 0.000 0.000 basic.py:390(__repr__)
2 0.000 0.000 0.148 0.074 {method 'obj' of 'pycalphad.core.phase_rec.PhaseRecord' objects}
4 0.000 0.000 0.000 0.000 ops.py:57(f)
1 0.000 0.000 0.000 0.000 cartesian.py:9(cartesian)
18 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects}
8 0.000 0.000 0.000 0.000 merge.py:79(_assert_compat_valid)
11 0.000 0.000 0.000 0.000 base.py:590(_coerce_to_ndarray)
11 0.000 0.000 0.000 0.000 variable.py:1274(<genexpr>)
5 0.000 0.000 0.000 0.000 {method 'index' of 'list' objects}
6 0.000 0.000 0.000 0.000 common.py:282(is_float_dtype)
14 0.000 0.000 0.000 0.000 utils.py:167(is_valid_numpy_dtype)
1 0.000 0.000 0.000 0.000 base.py:1440(append)
8 0.000 0.000 0.000 0.000 base.py:947(_set_names)
5 0.000 0.000 0.000 0.000 indexing.py:276(__init__)
7 0.000 0.000 0.000 0.000 common.py:188(is_datetime_or_timedelta_dtype)
4 0.000 0.000 0.000 0.000 equilibrium.py:231(<genexpr>)
6 0.000 0.000 0.000 0.000 calculate.py:264(<genexpr>)
1 0.000 0.000 0.000 0.000 concat.py:392(_concat_index_asobject)
5 0.000 0.000 0.000 0.000 calculate.py:77(<listcomp>)
1 0.000 0.000 0.000 0.000 variables.py:71(__new__)
5 0.000 0.000 0.000 0.000 common.py:153(is_integer_dtype)
1 0.000 0.000 0.003 0.003 combine.py:164(<genexpr>)
10 0.000 0.000 0.000 0.000 utils.py:116(remove_incompatible_items)
19 0.000 0.000 0.000 0.000 {method 'upper' of 'str' objects}
10 0.000 0.000 0.000 0.000 base.py:874(_values)
4 0.000 0.000 0.000 0.000 variable.py:951(<listcomp>)
8 0.000 0.000 0.000 0.000 variable.py:1178(name)
2 0.000 0.000 0.000 0.000 {built-in method _functools.reduce}
7 0.000 0.000 0.000 0.000 common.py:106(is_string_dtype)
5 0.000 0.000 0.000 0.000 algorithms.py:104(<lambda>)
5 0.000 0.000 0.000 0.000 common.py:292(is_bool_dtype)
5 0.000 0.000 0.000 0.000 common.py:54(is_object_dtype)
3 0.000 0.000 0.000 0.000 calculate.py:415(<genexpr>)
8 0.000 0.000 0.000 0.000 calculate.py:449(<genexpr>)
10 0.000 0.000 0.000 0.000 {method 'intersection' of 'set' objects}
9 0.000 0.000 0.000 0.000 stride_tricks.py:25(_maybe_view_as_subclass)
4 0.000 0.000 0.000 0.000 variable.py:428(copy)
1 0.000 0.000 0.000 0.000 dataset.py:413(copy)
8 0.000 0.000 0.000 0.000 ops.py:59(<genexpr>)
4 0.000 0.000 0.000 0.000 common.py:150(get_axis_num)
3 0.000 0.000 0.000 0.000 _methods.py:34(_prod)
4 0.000 0.000 0.000 0.000 common.py:168(_get_axis_num)
2 0.000 0.000 0.000 0.000 variable.py:265(data)
3 0.000 0.000 0.000 0.000 calculate.py:422(<genexpr>)
4 0.000 0.000 0.000 0.000 base.py:814(shape)
2 0.000 0.000 0.000 0.000 dataset.py:36(_get_virtual_variable)
4 0.000 0.000 0.000 0.000 merge.py:88(__init__)
6 0.000 0.000 0.000 0.000 logic.py:89(fuzzy_bool)
3 0.000 0.000 0.000 0.000 equilibrium.py:240(<genexpr>)
4 0.000 0.000 0.000 0.000 alignment.py:15(_get_joiner)
5 0.000 0.000 0.000 0.000 {method 'index' of 'tuple' objects}
1 0.000 0.000 0.000 0.000 numeric.py:2476(array_equal)
3 0.000 0.000 0.000 0.000 dataarray.py:369(__len__)
2 0.000 0.000 0.000 0.000 cache.py:41(_make_key)
2 0.000 0.000 0.000 0.000 calculate.py:326(<dictcomp>)
3 0.000 0.000 0.000 0.000 utils.py:303(__iter__)
11 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects}
3 0.000 0.000 0.000 0.000 coordinates.py:42(__len__)
12 0.000 0.000 0.000 0.000 utils.py:294(__getitem__)
12 0.000 0.000 0.000 0.000 merge.py:325(<genexpr>)
8 0.000 0.000 0.000 0.000 str.py:628(_print_Symbol)
2 0.000 0.000 0.000 0.000 utils.py:236(unpack_phases)
4 0.000 0.000 0.000 0.000 base.py:1542(_isnan)
10 0.000 0.000 0.000 0.000 symbol.py:71(<lambda>)
2 0.000 0.000 0.000 0.000 lower_convex_hull.py:419(<genexpr>)
10 0.000 0.000 0.000 0.000 base.py:512(dtype)
2 0.000 0.000 0.000 0.000 function_base.py:4109(<listcomp>)
10 0.000 0.000 0.000 0.000 {method 'copy' of 'dict' objects}
2 0.000 0.000 0.000 0.000 equilibrium.py:240(<listcomp>)
4 0.000 0.000 0.000 0.000 dataset.py:227(<listcomp>)
2 0.000 0.000 0.000 0.000 cache.py:34(__init__)
3 0.000 0.000 0.000 0.000 calculate.py:430(<genexpr>)
8 0.000 0.000 0.000 0.000 {method 'values' of 'collections.OrderedDict' objects}
4 0.000 0.000 0.000 0.000 missing.py:27(isnull)
4 0.000 0.000 0.000 0.000 base.py:527(get_values)
1 0.000 0.000 0.000 0.000 {built-in method pandas.lib.array_equivalent_object}
1 0.000 0.000 0.000 0.000 equilibrium.py:242(<listcomp>)
2 0.000 0.000 0.000 0.000 dataarray.py:386(values)
6 0.000 0.000 0.000 0.000 cache.py:38(__hash__)
6 0.000 0.000 0.000 0.000 {method 'tolist' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 lower_convex_hull.py:369(<listcomp>)
4 0.000 0.000 0.000 0.000 compiled_model.pxd:8(__get__)
2 0.000 0.000 0.000 0.000 numeric.py:571(asfortranarray)
12 0.000 0.000 0.000 0.000 {built-in method pandas.algos.ensure_object}
1 0.000 0.000 0.000 0.000 calculate.py:67(<listcomp>)
2 0.000 0.000 0.000 0.000 dataset.py:292(attrs)
2 0.000 0.000 0.000 0.000 dataset.py:95(as_dataset)
1 0.000 0.000 0.000 0.000 {built-in method numpy.core.multiarray.unravel_index}
2 0.000 0.000 0.000 0.000 calculate.py:327(<listcomp>)
1 0.000 0.000 0.000 0.000 fromnumeric.py:1490(nonzero)
1 0.000 0.000 0.000 0.000 {built-in method utcnow}
1 0.000 0.000 0.000 0.000 base.py:379(_shallow_copy_with_infer)
3 0.000 0.000 0.000 0.000 function_base.py:4099(<listcomp>)
1 0.000 0.000 0.000 0.000 dataset.py:546(remove)
8 0.000 0.000 0.000 0.000 base.py:940(nlevels)
3 0.000 0.000 0.000 0.000 utils.py:369(__len__)
1 0.000 0.000 0.000 0.000 lower_convex_hull.py:382(<listcomp>)
1 0.000 0.000 0.000 0.000 lower_convex_hull.py:370(<listcomp>)
3 0.000 0.000 0.000 0.000 _collections_abc.py:634(__len__)
1 0.000 0.000 0.000 0.000 dataset.py:651(set_coords)
1 0.000 0.000 0.000 0.000 equilibrium.py:232(<listcomp>)
2 0.000 0.000 0.000 0.000 {built-in method numpy.core.multiarray.result_type}
2 0.000 0.000 0.000 0.000 base.py:465(is_)
1 0.000 0.000 0.000 0.000 {method 'cumsum' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 dataset.py:1492(_assert_all_in_dataset)
1 0.000 0.000 0.000 0.000 calculate.py:46(<listcomp>)
2 0.000 0.000 0.000 0.000 common.py:69(is_datetimetz)
1 0.000 0.000 0.000 0.000 {method 'nonzero' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 calculate.py:411(<listcomp>)
2 0.000 0.000 0.000 0.000 variable.py:311(values)
1 0.000 0.000 0.000 0.000 fromnumeric.py:353(repeat)
8 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects}
1 0.000 0.000 0.000 0.000 base.py:1478(_append_same_dtype)
2 0.000 0.000 0.000 0.000 common.py:59(is_sparse)
4 0.000 0.000 0.000 0.000 utils.py:232(<listcomp>)
4 0.000 0.000 0.000 0.000 utils.py:351(<lambda>)
1 0.000 0.000 0.000 0.000 concat.py:407(<listcomp>)
1 0.000 0.000 0.000 0.000 {method 'repeat' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 variable.py:1123(<listcomp>)
1 0.000 0.000 0.000 0.000 base.py:1121(is_categorical)
5 0.000 0.000 0.000 0.000 variable.py:1158(to_coord)
1 0.000 0.000 0.000 0.000 equilibrium.py:288(<dictcomp>)
1 0.000 0.000 0.000 0.000 concat.py:399(<listcomp>)
1 0.000 0.000 0.000 0.000 equilibrium.py:335(<listcomp>)
1 0.000 0.000 0.000 0.000 cartesian.py:45(<listcomp>)
1 0.000 0.000 0.000 0.000 base.py:150(<listcomp>)
4 0.000 0.000 0.000 0.000 utils.py:333(<lambda>)
1 0.000 0.000 0.000 0.000 base.py:122(compute)
1 0.000 0.000 0.000 0.000 dataset.py:540(__delitem__)
3 0.000 0.000 0.000 0.000 equilibrium.py:248(<genexpr>)
1 0.000 0.000 0.000 0.000 function_base.py:1264(copy)
4 0.000 0.000 0.000 0.000 merge.py:330(_get_priority_vars)
3 0.000 0.000 0.000 0.000 variable.py:1119(<genexpr>)
1 0.000 0.000 0.000 0.000 common.py:231(is_datetimelike_v_numeric)
2 0.000 0.000 0.000 0.000 calculate.py:333(<listcomp>)
1 0.000 0.000 0.000 0.000 lower_convex_hull.py:368(<listcomp>)
1 0.000 0.000 0.000 0.000 lower_convex_hull.py:385(<setcomp>)
1 0.000 0.000 0.000 0.000 combine.py:120(_calc_concat_dim_coord)
1 0.000 0.000 0.000 0.000 common.py:315(is_complex_dtype)
2 0.000 0.000 0.000 0.000 compiled_model.pxd:6(__get__)
1 0.000 0.000 0.000 0.000 base.py:1464(<listcomp>)
1 0.000 0.000 0.000 0.000 dataset.py:487(__contains__)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.000 0.000 0.000 0.000 cartesian.py:48(<listcomp>)
1 0.000 0.000 0.000 0.000 {method 'discard' of 'set' objects}
2 0.000 0.000 0.000 0.000 compiled_model.pxd:5(__get__)
1 0.000 0.000 0.000 0.000 {built-in method builtins.divmod}
1 0.000 0.000 0.000 0.000 numeric.py:128(inferred_type)
Out[7]:
<pstats.Stats at 0x7f32b1bea5c0>
In [ ]:
Content source: richardotis/pycalphad-sandbox
Similar notebooks: