In [1]:
import pycalphad.io.tdb
from pycalphad.io.tdb import expand_keyword
def _process_typedef(targetdb, typechar, line):
"""
Process the TYPE_DEFINITION command.
"""
# GES A_P_D BCC_A2 MAGNETIC -1 0.4
tokens = line.replace(',', '').split()
if len(tokens) < 4:
return
keyword = expand_keyword(['DISORDERED_PART', 'MAGNETIC', 'NEVER_DISORDERS'], tokens[3].upper())[0]
if len(keyword) == 0:
raise ValueError('Unknown keyword: {}'.format(tokens[3]))
if keyword == 'MAGNETIC':
# magnetic model (IHJ model assumed by default)
targetdb.tdbtypedefs[typechar] = {
'ihj_magnetic':[float(tokens[4]), float(tokens[5])]
}
# GES A_P_D L12_FCC DIS_PART FCC_A1
if keyword == 'DISORDERED_PART':
# order-disorder model
targetdb.tdbtypedefs[typechar] = {
'disordered_phase': tokens[4].upper(),
'ordered_phase': tokens[2].upper()
}
if tokens[2].upper() in targetdb.phases:
# Since TDB files do not enforce any kind of ordering
# on the specification of ordered and disordered phases,
# we need to handle the case of when either phase is specified
# first. In this case, we imagine the ordered phase is
# specified first. If the disordered phase is specified
# first, we will have to catch it in _process_phase().
targetdb.phases[tokens[2].upper()].model_hints.update(
targetdb.tdbtypedefs[typechar]
)
# GES AMEND_PHASE_DESCRIPTION SIGMA NEVER_DIS SIGMA_DIS
if keyword == 'NEVER_DISORDERS':
if len(tokens) < 4:
return
targetdb.tdbtypedefs[typechar] = {'never_disorders': True}
if tokens[2].upper() in targetdb.phases:
targetdb.phases[tokens[2].upper()].model_hints.update(
targetdb.tdbtypedefs[typechar]
)
def _process_phase(targetdb, name, typedefs, subls):
"""
Process the PHASE command.
"""
splitname = name.split(':')
phase_name = splitname[0].upper()
options = None
if len(splitname) > 1:
options = splitname[1]
targetdb.add_structure_entry(phase_name, phase_name)
model_hints = {}
for typedef in list(typedefs):
if typedef in targetdb.tdbtypedefs.keys():
if 'ihj_magnetic' in targetdb.tdbtypedefs[typedef].keys():
model_hints['ihj_magnetic_afm_factor'] = \
targetdb.tdbtypedefs[typedef]['ihj_magnetic'][0]
model_hints['ihj_magnetic_structure_factor'] = \
targetdb.tdbtypedefs[typedef]['ihj_magnetic'][1]
if 'ordered_phase' in targetdb.tdbtypedefs[typedef].keys():
model_hints['ordered_phase'] = \
targetdb.tdbtypedefs[typedef]['ordered_phase']
model_hints['disordered_phase'] = \
targetdb.tdbtypedefs[typedef]['disordered_phase']
if model_hints['disordered_phase'] in targetdb.phases:
targetdb.phases[model_hints['disordered_phase']]\
.model_hints.update({'ordered_phase': model_hints['ordered_phase'],
'disordered_phase': model_hints['disordered_phase']})
if 'never_disorders' in targetdb.tdbtypedefs[typedef].keys():
model_hints['never_disorders'] = \
targetdb.tdbtypedefs[typedef]['never_disorders']
targetdb.add_phase(phase_name, model_hints, subls)
pycalphad.io.tdb._TDB_PROCESSOR['TYPE_DEFINITION'] = _process_typedef
pycalphad.io.tdb._TDB_PROCESSOR['PHASE'] = _process_phase
from pycalphad import Model
from sympy import S, Add
import pycalphad.variables as v
class NeverDisordersModel(Model):
def atomic_ordering_energy(self, dbe):
"""
Return the atomic ordering contribution in symbolic form.
Description follows Servant and Ansara, Calphad, 2001.
Also includes "never disordering" model following Lukas, Fries and Sundman, 2007, p. 145.
"""
phase = dbe.phases[self.phase_name]
ordered_phase_name = phase.model_hints.get('ordered_phase', None)
disordered_phase_name = phase.model_hints.get('disordered_phase', None)
never_disorders = phase.model_hints.get('never_disorders', False)
if phase.name != ordered_phase_name:
return S.Zero
disordered_model = self.__class__(dbe, sorted(self.components),
disordered_phase_name)
constituents = [sorted(set(c).intersection(self.components)) \
for c in dbe.phases[ordered_phase_name].constituents]
# Fix variable names
variable_rename_dict = {}
for atom in disordered_model.energy.atoms(v.SiteFraction):
# Replace disordered phase site fractions with mole fractions of
# ordered phase site fractions.
# Special case: Pure vacancy sublattices
all_species_in_sublattice = \
dbe.phases[disordered_phase_name].constituents[
atom.sublattice_index]
if atom.species == 'VA' and len(all_species_in_sublattice) == 1:
# Assume: Pure vacancy sublattices are always last
vacancy_subl_index = \
len(dbe.phases[ordered_phase_name].constituents)-1
variable_rename_dict[atom] = \
v.SiteFraction(
ordered_phase_name, vacancy_subl_index, atom.species)
else:
# All other cases: replace site fraction with mole fraction
variable_rename_dict[atom] = \
self.mole_fraction(
atom.species,
ordered_phase_name,
constituents,
dbe.phases[ordered_phase_name].sublattices
)
# Save all of the ordered energy contributions
# This step is why this routine must be called _last_ in build_phase
ordered_energy = Add(*list(self.models.values()))
self.models.clear()
# Copy the disordered energy contributions into the correct bins
for name, value in disordered_model.models.items():
self.models[name] = value.xreplace(variable_rename_dict)
# All magnetic parameters will be defined in the disordered model
self.TC = self.curie_temperature = disordered_model.TC
self.TC = self.curie_temperature = self.TC.xreplace(variable_rename_dict)
molefraction_dict = {}
# Construct a dictionary that replaces every site fraction with its
# corresponding mole fraction in the disordered state
for sitefrac in ordered_energy.atoms(v.SiteFraction):
all_species_in_sublattice = \
dbe.phases[ordered_phase_name].constituents[
sitefrac.sublattice_index]
if sitefrac.species == 'VA' and len(all_species_in_sublattice) == 1:
# pure-vacancy sublattices should not be replaced
# this handles cases like AL,NI,VA:AL,NI,VA:VA and
# ensures the VA's don't get mixed up
continue
molefraction_dict[sitefrac] = \
self.mole_fraction(sitefrac.species,
ordered_phase_name, constituents,
dbe.phases[ordered_phase_name].sublattices)
if never_disorders:
# Remove disordered model ideal mixing contribution
self.models['idmix'] = 0.0
return ordered_energy
else:
return ordered_energy - ordered_energy.subs(molefraction_dict,
simultaneous=True)
In [ ]:
%matplotlib inline
import matplotlib.pyplot as plt
from pycalphad import Database, ternplot
dbf = Database('MoNiRe_BEF.TDB')
In [ ]:
fig = plt.figure(figsize=(9,6))
conds = {v.T: 500, v.P:101325, v.X('NI'): (0,1,0.015), v.X('RE'): (0,1,0.015)}
phases = sorted(dbf.phases.keys())
ternplot(dbf, ['MO', 'NI', 'RE', 'VA'], phases, conds,
x=v.X('NI'), y=v.X('RE'), eq_kwargs={'model': NeverDisordersModel})
plt.show()
In [ ]:
sorted(dbf.phases.keys())
In [ ]: