In [1]:
from pycalphad import calculate, equilibrium, Database
import pycalphad.variables as v
from numpy.testing import assert_allclose
from pycalphad.tests.datasets import ALFE_TDB
ALFE_DBF = Database(ALFE_TDB)
res = calculate(ALFE_DBF, ['AL', 'FE'], 'LIQUID', T=[1400, 2500], P=101325,
                points={'LIQUID': [[0.1, 0.9], [0.2, 0.8], [0.3, 0.7],
                                   [0.7, 0.3], [0.8, 0.2]]})
eq = equilibrium(ALFE_DBF, ['AL', 'FE'], 'LIQUID',
                 {v.T: [1400, 2500], v.P: 101325,
                  v.X('AL'): [0.1, 0.2, 0.3, 0.7, 0.8]}, verbose=True, pbar=False, nprocs=2)
assert_allclose(eq.GM, res.GM, atol=0.1)


Calculation Backend: Compiled (ufuncify)
Components: AL FE
Phases: LIQUID [done]
Computing initial grid [204 points, 27.8KB]
Computing convex hull [iteration 1]
progress 262390.178337 [0 conditions updated]
Global search complete
Refining equilibrium
{'P': array([0]), 'X_AL': array([0, 1, 2, 3, 4]), 'T': array([0, 1])} [[[ -79222.7448164   -86061.43330619  -90886.85876494  -92697.19178195
    -88845.8932317 ]
  [-192453.32547153 -198406.11693955 -202046.38918927 -199300.69249888
   -194678.13710397]]]
<xarray.DataArray 'GM' (P: 1, T: 2, X_AL: 5)>
array([[[ -79222.7448164 ,  -86061.43330619,  -90886.85876494,
          -92697.19178195,  -88845.8932317 ],
        [-192453.32547153, -198406.11693955, -202046.38918927,
         -199300.69249888, -194678.13710397]]])
Coordinates:
  * P        (P) float64 1.013e+05
  * T        (T) float64 1.4e+03 2.5e+03
  * X_AL     (X_AL) float64 0.1 0.2 0.3 0.7 0.8

In [ ]: