Components: H HE LI
Phases: build_callables [N, P, T]
TEST
[done]
build_callables [N, P, T]
('included_composition_indices', array([ 2, -1], dtype=int32))
('best_guess_simplex', array([1, 2], dtype=int32))
('trial_simplices', array([[1, 2],
[1, 2]], dtype=int32))
('f_contig_trial', array([[ 0., 1.],
[ 1., 1.]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ 0.7, 0.3]))
('f_contig_trial', array([[ 0., 1.],
[ 1., 1.]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ 0.7, 0.3]))
('smallest_fractions', array([ 0.3, 0.3]))
('candidate_tieline', array([[ 1., 0.],
[ 0., 1.]]))
('rhs', array([ 1.00000000e+10, 1.00000000e+10]))
('candidate_potentials', array([ 1.00000000e+10, 1.00000000e+10]))
('min_df', array(30))
('min_df_value', array(-10000007271.047592))
('f_contig_trial', array([[ 0.55555556, 1. ],
[ 1. , 1. ]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ 1.575, -0.575]))
('f_contig_trial', array([[ 0. , 0.55555556],
[ 1. , 1. ]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ 0.46, 0.54]))
('smallest_fractions', array([-1.575, -0.54 ]))
('candidate_tieline', array([[ 1. , 0. ],
[ 0.44444444, 0.55555556]]))
('rhs', array([ 1.00000000e+10, -7.27104760e+03]))
('candidate_potentials', array([ 1.00000000e+10, -8.00001309e+09]))
('min_df', array(4))
('min_df_value', array(-9999999999.999973))
('f_contig_trial', array([[ 1.00000000e-15, 5.55555556e-01],
[ 1.00000000e+00, 1.00000000e+00]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ 0.46, 0.54]))
('f_contig_trial', array([[ 0.00000000e+00, 1.00000000e-15],
[ 1.00000000e+00, 1.00000000e+00]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ -3.00000000e+14, 3.00000000e+14]))
('smallest_fractions', array([ 4.60000000e-01, -3.00000000e+14]))
('candidate_tieline', array([[ 1.00000000e+00, 1.00000000e-15],
[ 4.44444444e-01, 5.55555556e-01]]))
('rhs', array([ -7.47258030e-10, -7.27104760e+03]))
('candidate_potentials', array([ -7.34170145e-10, -1.30878857e+04]))
('min_df', array(9))
('min_df_value', array(-4275.244200561462))
('f_contig_trial', array([[ 1.00000000e-15, 5.55555556e-01],
[ 1.00000000e+00, 1.00000000e+00]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ 0.46, 0.54]))
('f_contig_trial', array([[ 1.00000000e-15, 1.00000000e-15],
[ 1.00000000e+00, 1.00000000e+00]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ -1.00000000e+19, -1.00000000e+19]))
('smallest_fractions', array([ 4.60000000e-01, -1.00000000e+19]))
('candidate_tieline', array([[ 6.66666667e-01, 1.00000000e-15],
[ 4.44444444e-01, 5.55555556e-01]]))
('rhs', array([-4275.24420056, -7271.04760243]))
('candidate_potentials', array([-6412.86630084, -7957.5926437 ]))
('min_df', array(10))
('min_df_value', array(-425.87750596329965))
('f_contig_trial', array([[ 1.00000000e-15, 5.55555556e-01],
[ 1.00000000e+00, 1.00000000e+00]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ 0.46, 0.54]))
('f_contig_trial', array([[ 1.00000000e-15, 1.00000000e-15],
[ 1.00000000e+00, 1.00000000e+00]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ -1.00000000e+19, -1.00000000e+19]))
('smallest_fractions', array([ 4.60000000e-01, -1.00000000e+19]))
('candidate_tieline', array([[ 5.55555556e-01, 1.00000000e-15],
[ 4.44444444e-01, 5.55555556e-01]]))
('rhs', array([-3988.58100643, -7271.04760243]))
('candidate_potentials', array([-7179.44581158, -7344.32903512]))
('min_df', array(31))
('min_df_value', array(-18.320358170944473))
('f_contig_trial', array([[ 0.44444444, 0.55555556],
[ 1. , 1. ]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ 2.3, -1.3]))
('f_contig_trial', array([[ 1.00000000e-15, 4.44444444e-01],
[ 1.00000000e+00, 1.00000000e+00]]))
('rhs', array([ 0.3, 1. ]))
('fractions', array([ 0.325, 0.675]))
('smallest_fractions', array([-1.3 , 0.325]))
('candidate_tieline', array([[ 5.55555556e-01, 1.00000000e-15],
[ 5.55555556e-01, 4.44444444e-01]]))
('rhs', array([-3988.58100643, -7271.04760243]))
('candidate_potentials', array([-7179.44581158, -7385.549841 ]))
('min_df', array(10))
('min_df_value', array(5.643395777030236e-13))
('Redundant phase:', CompositionSet(TEST, [ 1.00000000e-15 5.55555556e-01 4.44444444e-01], NP=0.6749999999999997, GM=-7271.047602431603))
Removing CompositionSet(TEST, [ 1.00000000e-15 5.55555556e-01 4.44444444e-01], NP=nan, GM=-7271.047602431603)
Trying to improve poor solution
Chemical Potentials [ -7385.54984098 -4188.6475501 -12142.35649515]
[ 0. 0. 0. 0. 0. 0. 0.]
[ 1.00000000e+00 1.00000000e+05 1.27300000e+03 1.09005177e-02
6.89099482e-01 3.00000000e-01 1.00000000e+00]
Status: 0 b'Algorithm terminated successfully at a locally optimal point, satisfying the convergence tolerances (can be specified by options).'
Adding CompositionSet(TEST, [ 4.44444444e-01 5.55555556e-01 1.00000000e-15], NP=0.5, GM=-7271.047602431603) Driving force: 1661.5545897199527
Trying to improve poor solution
Chemical Potentials [-7385.54984144 -7385.53653288 -7385.53857956]
[ 5.00000000e-13 5.00000000e-18 3.92772977e-16 1.03304504e-10
1.00486359e-12 1.00486361e-12 1.00486363e-12 1.00486360e-12
1.03304235e-10 8.34701242e-13 1.24694100e-12]
[ 1.00000000e+00 1.00000000e+05 1.27300000e+03 4.84006000e-03
4.97579974e-01 4.97579966e-01 4.97579957e-01 4.97579971e-01
4.84007264e-03 5.99017720e-01 4.00982280e-01]
Status: 0 b'Algorithm terminated successfully at a locally optimal point, satisfying the convergence tolerances (can be specified by options).'
('Composition Sets', [CompositionSet(TEST, [ 0.00484006 0.49757997 0.49757997], NP=0.5990177196985614, GM=-7385.540390613181), CompositionSet(TEST, [ 0.49757996 0.49757997 0.00484007], NP=0.40098228030143857, GM=-7385.540390613311)])
<xarray.Dataset>
Dimensions: (MU_H: 1, N: 1, P: 1, T: 1, X_LI: 1, component: 3, internal_dof: 3, vertex: 4)
Coordinates:
* MU_H (MU_H) float64 -7.386e+03
* N (N) float64 1.0
* P (P) float64 1e+05
* T (T) float64 1.273e+03
* X_LI (X_LI) float64 0.3
* vertex (vertex) int64 0 1 2 3
* component (component) <U2 'H' 'HE' 'LI'
Dimensions without coordinates: internal_dof
Data variables:
Y (N, P, T, MU_H, X_LI, vertex, internal_dof) float64 0.00484 ...
Phase (N, P, T, MU_H, X_LI, vertex) <U6 'TEST' 'TEST' '' ''
GM (N, P, T, MU_H, X_LI) float64 -7.386e+03
MU (N, P, T, MU_H, X_LI, component) float64 -7.386e+03 ...
NP (N, P, T, MU_H, X_LI, vertex) float64 0.599 0.401 nan nan
X (N, P, T, MU_H, X_LI, vertex, component) float64 0.00484 ...
Attributes:
engine: pycalphad 0.7.1.post2+87.gfb8869c.dirty
created: 2019-02-21T23:34:57.294092