In [1]:
import matplotlib.pyplot as plt
import proofofConcept as poc
import numpy as np
import math as m
In [2]:
#define path
path = "C://Users//Ymubarak//Documents//ME102B//me102b_lane_painter//ImageProcessing//squigly.txt"
In [3]:
# Make Image Object
Im = poc.Image(path)
nodelist= Im.getNodes()
In [4]:
# seeing whole map shape
x1 = [n.xloc for n in nodelist]
x2 = [n.yloc for n in nodelist]
plt.scatter(x1,x2)
plt.show()
In [5]:
#testing the get neighbors function
random_node = 30
n_size =4
n0 =nodelist[random_node]
ns = n0.findneighbors(nodelist,n_size)
x = [n.xloc for n in ns]
y = [n.yloc for n in ns]
plt.scatter(x,y)
plt.scatter(n0.xloc , n0.yloc)
close= Im.NearestNode([n0.xloc, n0.yloc])
ind = close[1]
closenode= close[0]
plt.scatter(closenode.xloc, closenode.yloc)
plt.show()
In [6]:
# #trying the least squares approach
[n,error,x,y]=n0.gettangent(ns)
n
error
ran = np.array(list(range(-2,2)))
yhat = n[0]*ran
plt.scatter(x,y)
#plt.scatter(ran,yhat)
plt.show()
op_adj = n[0][0]
m.atan(op_adj**-1) * 180/3.142
Out[6]:
In [7]:
#Im.getNextStates(n_size)
#ns = n0.findneighbors(nodelist,n_size)
#Im.nodelist
n0.findneighbors(Im.getNodes(),n_size)
In [8]:
n0.where(nodelist)
Out[8]:
In [ ]:
In [ ]:
In [ ]: