In [1]:
from sympy import *
init_printing()

In [2]:
A = Matrix([[4, -10], [2, -4]])
A


Out[2]:
$$\left[\begin{matrix}4 & -10\\2 & -4\end{matrix}\right]$$

In [3]:
lamda = symbols('lamda')
p = A.charpoly(lamda)
factor(p)


Out[3]:
$$\lambda^{2} + 4$$

In [4]:
A.eigenvals()


Out[4]:
$$\left \{ - 2 i : 1, \quad 2 i : 1\right \}$$

In [5]:
simplify(A.eigenvects())


Out[5]:
$$\left [ \left ( - 2 i, \quad 1, \quad \left [ \left[\begin{matrix}\frac{10}{4 + 2 i}\\1\end{matrix}\right]\right ]\right ), \quad \left ( 2 i, \quad 1, \quad \left [ \left[\begin{matrix}\frac{10}{4 - 2 i}\\1\end{matrix}\right]\right ]\right )\right ]$$