In [1]:
using XSim,JWAS, DataFrames
In [2]:
srand(314);
In [3]:
using XSim
In [4]:
nind = 100
chrLength= 1.0 #length of each chromosome
numChr = 10 #number of chromosomes
nmarkers = 2000 #number of loci for each chromosome
nQTL = 100 #number of QTL for each chromosome
Out[4]:
In [5]:
build_genome(numChr,chrLength,nmarkers,nQTL)
In [6]:
popSizeFounder = nind
sires = sampleFounders(popSizeFounder);
dams = sampleFounders(popSizeFounder);
In [7]:
ngen,popSize = 10,nind
sires1,dams1,gen1 = sampleRan(popSize, ngen, sires, dams);
In [8]:
animals=concatCohorts(sires1,dams1);
In [9]:
M = getOurGenotypes(animals);
In [10]:
P = getOurPhenVals(animals,1.0); #residual variance is 1.0
nothing
In [11]:
phenotypes = DataFrame()
phenotypes[:y]=P;
In [12]:
writetable("phenotypes.csv",phenotypes)
In [13]:
writedlm("genotype.csv",M)
In [14]:
M=readdlm("genotype.csv");
phenotypes=readtable("phenotypes.csv");
nothing
In [15]:
R=1.0
model_equations = "y = intercept";
model = build_model(model_equations,R);
G=0.01
add_markers(model,M,G,header=false,G_is_marker_variance=true);
@time out=runMCMC(model,phenotypes,Pi=0.95,estimatePi=true,chain_length=100,
printout_frequency=20,printout_MCMCinfo=true,methods="BayesC",
output_samples_frequency=10);
In [16]:
using JWAS:misc
In [17]:
A=GWAS("MCMC_samples_for_marker_effects.txt",model,header=false,
window_size=10,threshold=0.01);
In [18]:
using Plots
In [21]:
pyplot()
Out[21]:
In [22]:
plot(A)
Out[22]:
In [ ]: