In [1]:
"Hello World!"


Out[1]:
'Hello World!'

In [2]:
lista = ["Raul", "Ezequiel"]

In [5]:
for name in lista:
    print("hello ", name)


hello  Raul
hello  Ezequiel

In [1]:
class Switcher(object):
    def numbers_to_methods_to_strings(self, argument):
        """Dispatch method"""
        # prefix the method_name with 'number_' because method names
        # cannot begin with an integer.
        method_name = 'number_' + str(argument)
        # Get the method from 'self'. Default to a lambda.
        method = getattr(self, method_name, lambda: "nothing")
        # Call the method as we return it
        return method()

    def number_0(self):
        return "zero"

    def number_1(self):
        return "one"

    def number_2(self):
        return "two"

In [2]:
switcher = Switcher()

In [7]:
switcher.numbers_to_methods_to_strings(0)


Out[7]:
'zero'

In [1]:
import numpy as np

In [2]:
neurons = np.random.random((10, 5))

In [3]:
patr = np.random.random((1, 5))

In [4]:
distances = np.linalg.norm(neurons - patr, axis=1)

In [5]:
closest = distances.argmin()

In [2]:
from sympy import *

In [4]:
init_printing()

In [5]:
x, y, z = symbols('x y z')
Integral(sqrt(1/x), x)


Out[5]:
$$\int \sqrt{\frac{1}{x}}\, dx$$

In [12]:
expr =  x**3 + 3*x**2*y + 3*x*y**2 + y**3
expr


Out[12]:
$$x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3}$$

In [15]:
factors = factor(expr)
factors


Out[15]:
$$\left(x + y\right)^{3}$$

In [16]:
expand(factors)


Out[16]:
$$x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3}$$

In [22]:
derivada = Derivative(expr, x)
derivada


Out[22]:
$$\frac{\partial}{\partial x}\left(x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3}\right)$$

In [23]:
derivada.doit()


Out[23]:
$$3 x^{2} + 6 x y + 3 y^{2}$$

In [27]:
integral = Integral(derivada.doit(), x)
integral


Out[27]:
$$\int 3 x^{2} + 6 x y + 3 y^{2}\, dx$$

In [28]:
integral.doit()


Out[28]:
$$x^{3} + 3 x^{2} y + 3 x y^{2}$$

In [29]:
x = Symbol('x')
Limit(1/x, x, S.Infinity)


Out[29]:
$$\lim_{x \to \infty} \frac{1}{x}$$

In [30]:
Limit(1/x, x, S.Infinity).doit()


Out[30]:
$$0$$

In [32]:
Limit(1/x, x, 0, dir='-')


Out[32]:
$$\lim_{x \to 0^-} \frac{1}{x}$$

In [1]:
for x in range(41, 51):
    print('%d == %02d%02d when x=%d' % (x ** 2, x - 25, (50 - x) ** 2, x))


1681 == 1681 when x=41
1764 == 1764 when x=42
1849 == 1849 when x=43
1936 == 1936 when x=44
2025 == 2025 when x=45
2116 == 2116 when x=46
2209 == 2209 when x=47
2304 == 2304 when x=48
2401 == 2401 when x=49
2500 == 2500 when x=50

In [24]:
f = Function('f')
F = Function('F')
x, y, u= symbols('x y u')

In [5]:
eq = -2*f(x,y).diff(x) + 4*f(x,y).diff(y) + 5*f(x,y) - exp(x + 3*y)
eq


Out[5]:
$$5 f{\left (x,y \right )} - e^{x + 3 y} - 2 \frac{\partial}{\partial x} f{\left (x,y \right )} + 4 \frac{\partial}{\partial y} f{\left (x,y \right )}$$

In [6]:
pdsolve(eq)


Out[6]:
$$f{\left (x,y \right )} = \left(F{\left (4 x + 2 y \right )} + \frac{1}{15} e^{\frac{x}{2} + 4 y}\right) e^{\frac{x}{2} - y}$$

In [7]:
classify_pde(eq)


Out[7]:
('1st_linear_constant_coeff', '1st_linear_constant_coeff_Integral')

In [37]:
u = f(x, y)
ux = u.diff(x)
uy = u.diff(y)
eq = exp(2*x)*(u.diff(y)) + y*u - u
eq


Out[37]:
$$y f{\left (x,y \right )} - f{\left (x,y \right )} + e^{2 x} \frac{\partial}{\partial y} f{\left (x,y \right )}$$

In [15]:
sol = pdsolve(eq)
sol


Out[15]:
$$f{\left (x,y \right )} = e^{\frac{1}{2} \left(- y^{2} + 2 y + 2 F{\left (x \right )}\right) e^{- 2 x}}$$

In [16]:
eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)))
eq


Out[16]:
$$1 + \frac{2 \frac{\partial}{\partial x} f{\left (x,y \right )}}{f{\left (x,y \right )}} + \frac{3 \frac{\partial}{\partial y} f{\left (x,y \right )}}{f{\left (x,y \right )}} = 0$$

In [18]:
sol = pdsolve(eq)
sol


Out[18]:
$$f{\left (x,y \right )} = F{\left (3 x - 2 y \right )} e^{- \frac{2 x}{13} - \frac{3 y}{13}}$$

In [20]:
eq = (3*x - 2*y)*exp(-2*x/13 - 3*y/13)
eq


Out[20]:
$$\left(3 x - 2 y\right) e^{- \frac{2 x}{13} - \frac{3 y}{13}}$$

In [21]:
eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2
eq


Out[21]:
$$x \frac{\partial}{\partial x} f{\left (x,y \right )} + y^{2} f{\left (x,y \right )} - y^{2} - y \frac{\partial}{\partial y} f{\left (x,y \right )}$$

In [34]:
sol = pdsolve(eq)
sol


Out[34]:
$$f{\left (x,y \right )} = F{\left (x y \right )} e^{\frac{y^{2}}{2}} + 1$$

In [32]:
Eq(f(x, y), F(x*y)*exp(y**2/2) + 1)


Out[32]:
$$f{\left (x,y \right )} = F{\left (x y \right )} e^{\frac{y^{2}}{2}} + 1$$

In [35]:
sol ==  Eq(f(x, y), F(x*y)*exp(y**2/2) + 1)


Out[35]:
True

In [38]:
eq = y*x**2*u + y*u.diff(x) + u.diff(y)
eq


Out[38]:
$$x^{2} y f{\left (x,y \right )} + y \frac{\partial}{\partial x} f{\left (x,y \right )} + \frac{\partial}{\partial y} f{\left (x,y \right )}$$

In [40]:
sol = pdsolve(eq)
sol


Out[40]:
$$f{\left (x,y \right )} = F{\left (- 2 x + y^{2} \right )} e^{- \frac{x^{3}}{3}}$$

In [41]:
Eq(f(x, y), F(-2*x + y**2)*exp(-x**3/3))


Out[41]:
$$f{\left (x,y \right )} = F{\left (- 2 x + y^{2} \right )} e^{- \frac{x^{3}}{3}}$$

In [43]:
f = -2*x + y**2
diff(f, y)


Out[43]:
$$2 y$$

In [ ]: