In [1]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
In [2]:
columns = ["instances", "features", "seconds"]
In [3]:
lr_times = pd.read_csv("lr_times.txt", header=None, names=columns)
lr_time_grid = lr_times.pivot(index='instances', columns='features', values='seconds')
fig, ax = plt.subplots(figsize=(20,10))
ax.set_title('Logistic Regression')
sns.heatmap(lr_time_grid, linewidths=.5, cmap="bone_r", annot=True, fmt='.2g', ax=ax) # set vmin=0, vmax=9,
Out[3]:
In [4]:
mlp_times = pd.read_csv("mlp_times.txt", header=None, names=columns)
mlp_time_grid = mlp_times.pivot(index='instances', columns='features', values='seconds')
fig, ax = plt.subplots(figsize=(20,10))
ax.set_title('Multilayer Perceptron')
sns.heatmap(mlp_time_grid, linewidths=.5, cmap="bone_r", annot=True, fmt='.2g', ax=ax) # set vmin=0, vmax=9,
Out[4]:
In [5]:
svc_times = pd.read_csv("svc_times.txt", header=None, names=columns)
svc_time_grid = svc_times.pivot(index='instances', columns='features', values='seconds')
fig, ax = plt.subplots(figsize=(20,10))
ax.set_title('Support Vector Machine')
sns.heatmap(svc_time_grid, linewidths=.5, cmap="bone_r", annot=True, fmt='.2g', ax=ax) # set vmin=0, vmax=9,
Out[5]:
In [ ]: