In [2]:
%matplotlib inline
In [14]:
from sklearn.linear_model import Ridge
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split as tts
from yellowbrick.datasets import load_concrete
from yellowbrick.regressor import ResidualsPlot
# create a synthetic dataset
X, y = make_regression(
n_samples=20000,
n_features=15,
noise=40.0,
bias=100.0
)
# Create the train and test data
X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2, random_state=42)
# Instantiate the linear model and visualizer
model = Ridge(random_state=19)
visualizer = ResidualsPlot(
model,
train_color="tomato",
test_color="navy",
train_alpha=1.0,
test_alpha=1.0,
size=(1080, 720)
)
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof()
In [15]:
visualizer = ResidualsPlot(
model,
train_color="tomato",
test_color="navy",
train_alpha=0.35,
test_alpha=0.35,
size=(1080, 720)
)
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof()
In [ ]: