Train on 108 samples, validate on 23 samples
Epoch 1/35
108/108 [==============================] - 0s - loss: 0.1898 - val_loss: 0.1903
Epoch 2/35
108/108 [==============================] - 0s - loss: 0.1617 - val_loss: 0.1509
Epoch 3/35
108/108 [==============================] - 0s - loss: 0.1491 - val_loss: 0.1281
Epoch 4/35
108/108 [==============================] - 0s - loss: 0.1430 - val_loss: 0.1162
Epoch 5/35
108/108 [==============================] - 0s - loss: 0.1398 - val_loss: 0.1114
Epoch 6/35
108/108 [==============================] - 0s - loss: 0.1357 - val_loss: 0.1099
Epoch 7/35
108/108 [==============================] - 0s - loss: 0.1342 - val_loss: 0.1082
Epoch 8/35
108/108 [==============================] - 0s - loss: 0.1339 - val_loss: 0.1076
Epoch 9/35
108/108 [==============================] - 0s - loss: 0.1317 - val_loss: 0.1063
Epoch 10/35
108/108 [==============================] - 0s - loss: 0.1290 - val_loss: 0.1052
Epoch 11/35
108/108 [==============================] - 0s - loss: 0.1279 - val_loss: 0.1058
Epoch 12/35
108/108 [==============================] - 0s - loss: 0.1250 - val_loss: 0.1064
Epoch 13/35
108/108 [==============================] - 0s - loss: 0.1256 - val_loss: 0.1045
Epoch 14/35
108/108 [==============================] - 0s - loss: 0.1230 - val_loss: 0.1046
Epoch 15/35
108/108 [==============================] - 0s - loss: 0.1191 - val_loss: 0.1021
Epoch 16/35
108/108 [==============================] - 0s - loss: 0.1159 - val_loss: 0.0991
Epoch 17/35
108/108 [==============================] - 0s - loss: 0.1174 - val_loss: 0.0975
Epoch 18/35
108/108 [==============================] - 0s - loss: 0.1145 - val_loss: 0.0975
Epoch 19/35
108/108 [==============================] - 0s - loss: 0.1130 - val_loss: 0.0974
Epoch 20/35
108/108 [==============================] - 0s - loss: 0.1127 - val_loss: 0.0985
Epoch 21/35
108/108 [==============================] - 0s - loss: 0.1113 - val_loss: 0.0999
Epoch 22/35
108/108 [==============================] - 0s - loss: 0.1133 - val_loss: 0.0991
Epoch 23/35
108/108 [==============================] - 0s - loss: 0.1111 - val_loss: 0.0951
Epoch 24/35
108/108 [==============================] - 0s - loss: 0.1091 - val_loss: 0.0930
Epoch 25/35
108/108 [==============================] - 0s - loss: 0.1102 - val_loss: 0.0926
Epoch 26/35
108/108 [==============================] - 0s - loss: 0.1071 - val_loss: 0.0928
Epoch 27/35
108/108 [==============================] - 0s - loss: 0.1108 - val_loss: 0.0925
Epoch 28/35
108/108 [==============================] - 0s - loss: 0.1114 - val_loss: 0.0908
Epoch 29/35
108/108 [==============================] - 0s - loss: 0.1009 - val_loss: 0.0879
Epoch 30/35
108/108 [==============================] - 0s - loss: 0.1013 - val_loss: 0.0874
Epoch 31/35
108/108 [==============================] - 0s - loss: 0.1028 - val_loss: 0.0877
Epoch 32/35
108/108 [==============================] - 0s - loss: 0.1009 - val_loss: 0.0878
Epoch 33/35
108/108 [==============================] - 0s - loss: 0.1012 - val_loss: 0.0880
Epoch 34/35
108/108 [==============================] - 0s - loss: 0.1004 - val_loss: 0.0875
Epoch 35/35
108/108 [==============================] - 0s - loss: 0.1025 - val_loss: 0.0882