In [1]:
# Obtain the OpSim summary in a dataFrame
In [1]:
import pandas as pd
import numpy as np
import opsimsummary as oss
import os
In [11]:
pkgDir = os.path.split(oss.__file__)[0]
dbname = os.path.join(pkgDir, 'example_data', 'enigma_1189_micro.db')
In [16]:
!du -h $dbname
In [4]:
from sqlalchemy import create_engine
In [17]:
engine = create_engine('sqlite:///' + dbname)
In [21]:
df = pd.read_sql_query('SELECT * FROM Summary WHERE PropID is 364' , con=engine, index_col='obsHistID')
In [22]:
df.head()
Out[22]:
In [23]:
h = oss.HealPixelizedOpSim(opsimDF=df)
In [24]:
h.doPreCalcs()
In [25]:
h.obsHistIdsForTile(0)
Out[25]:
In [27]:
def inhids(lst):
return 9 in lst
In [28]:
all(h.opsimdf.obsHistID[h.opsimdf.hids.apply(inhids).values].values == h.obsHistIdsForTile(9))
Out[28]: