In [1]:
import pandas as pd

In [2]:
import numpy as np

In [3]:
print pd.__version__
print np.__version__


0.17.1
1.10.4

In [4]:
fname = 'sample.txt'

In [5]:
!head sample.txt


SourceID Photons AvgX AvgY
6144039378640938.000000 71 1457.802817 2692.802817
6144053114071082.000000 8 1498.125000 2696.375000
6145000614093866.000000 0 nan nan
6145000614092842.000000 0 nan nan
6144137763642410.000000 0 nan nan

In [6]:
df = pd.read_csv('sample.txt', sep='\s+')

In [7]:
df.head()


Out[7]:
SourceID Photons AvgX AvgY
0 6.144039e+15 71 1457.802817 2692.802817
1 6.144053e+15 8 1498.125000 2696.375000
2 6.145001e+15 0 NaN NaN
3 6.145001e+15 0 NaN NaN
4 6.144138e+15 0 NaN NaN

In [8]:
df.ix[0,0]


Out[8]:
6144039378640936.0

In [9]:
df.dtypes


Out[9]:
SourceID    float64
Photons       int64
AvgX        float64
AvgY        float64
dtype: object

In [10]:
df = pd.read_csv('sample.txt', sep='\s+', dtype={'SourceID': np.int64})

In [11]:
df.ix[0,0]


Out[11]:
6144039378640936.0

In [12]:
arr = np.loadtxt('sample.txt', skiprows=1)

In [13]:
arr[0,0]


Out[13]:
6144039378640938.0

In [14]:
arr.dtype


Out[14]:
dtype('float64')