In [36]:
import pandas as pd
%matplotlib inline 
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

In [2]:
from benchmarkInstanceCatalogs.InstanceCatalogBenchMarks import QueryBenchMarks

In [43]:
laptop_LSSTCATSIM_df = pd.read_hdf('test.hdf', 'table')

In [44]:
laptop_LSSTCATSIM_res = QueryBenchMarks.benchmarkResults(laptop_LSSTCATSIM_df)

In [45]:
laptop_LSSTCATSIM_fig = QueryBenchMarks.plotBenchMarks(laptop_LSSTCATSIM_res)



In [46]:
map(lambda x: x.set_ylim(ymax=3000), [laptop_LSSTCATSIM_fig.axes[2],laptop_LSSTCATSIM_fig.axes[3]])
map(lambda x: x.grid(True), laptop_LSSTCATSIM_fig.axes)


Out[46]:
[None, None, None, None]

In [47]:
laptop_LSSTCATSIM_fig


Out[47]:

In [48]:
laptop_LSSTCATSIM_rless24_df = pd.read_hdf('magneto_test_rless24.hdf', 'table')

In [49]:
laptop_LSSTCATSIM_rless24_res = QueryBenchMarks.benchmarkResults(laptop_LSSTCATSIM_rless24_df)

In [60]:
laptop_LSSTCATSIM_rless24_fig = QueryBenchMarks.plotBenchMarks(laptop_LSSTCATSIM_rless24_res)
laptop_LSSTCATSIM_rless24_fig.axes[2].set_ylim(0,1000)
laptop_LSSTCATSIM_rless24_fig.axes[3].set_ylim(0, 1000)
laptop_LSSTCATSIM_rless24_fig.axes[0].set_ylim(0.,100)
laptop_LSSTCATSIM_rless24_fig


Out[60]:

In [57]:
laptop_LSSTCATSIM_zless1p3_df = pd.read_hdf('magneto_test_zless1p3/magneto_test_zless1p3.hdf', 'table')
laptop_LSSTCATSIM_zless1p3_res = QueryBenchMarks.benchmarkResults(laptop_LSSTCATSIM_zless1p3_df)
laptop_LSSTCATSIM_zless1p3_fig = QueryBenchMarks.plotBenchMarks(laptop_LSSTCATSIM_zless1p3_res)
laptop_LSSTCATSIM_zless1p3_fig.axes[0].set_ylim(ymax=500)
laptop_LSSTCATSIM_zless1p3_fig.axes[2].set_ylim(500,5000)
laptop_LSSTCATSIM_zless1p3_fig.axes[3].set_ylim(500, 5000)
laptop_LSSTCATSIM_zless1p3_fig


Out[57]:

In [55]:
plt.plot(laptop_LSSTCATSIM_rless24_res.numObjects, laptop_LSSTCATSIM_rless24_res.deltaTimeFull, 'bo', label='r_ab < 24')
plt.plot(laptop_LSSTCATSIM_zless1p3_res.numObjects, laptop_LSSTCATSIM_zless1p3_res.deltaTimeFull, 'rs', label='z < 1.3')
plt.yscale('log')
plt.xscale('log')
plt.legend(loc='best', numpoints=1)
plt.xlabel('numObjects') 
plt.ylabel('Time for focal plane')
plt.grid(True)



In [ ]: