In [1]:
from benchmarkInstanceCatalogs.InstanceCatalogBenchMarks import QueryBenchMarks
In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
In [3]:
import pandas as pd
In [4]:
from lsst.sims.catalogs.generation.db import CatalogDBObject
import lsst.sims.catUtils.baseCatalogModels as bcm
from lsst.sims.catalogs.measures.instance import InstanceCatalog
galDB = CatalogDBObject.from_objid('galaxyTiled')
# Create a child of the InstanceCatalog Class
class galCopy(InstanceCatalog):
column_outputs = ['id', 'raJ2000', 'decJ2000', 'redshift']
override_formats = {'raJ2000': '%8e', 'decJ2000': '%8e'}
In [5]:
boundLens = [0.1]
opsimDBHDF ='/Users/rbiswas/data/LSST/OpSimData/storage.h5'
fulldb = QueryBenchMarks.fromOpSimDF(instanceCatChild=galCopy, dbObject=galDB,
opSimHDF=opsimDBHDF, boundLens=boundLens,
numSamps=1, name='testingFullDB')
In [7]:
print fulldb.df
In [8]:
fulldb.aggregateResults()
In [10]:
rless24db = QueryBenchMarks.fromOpSimDF(instanceCatChild=galCopy, dbObject=galDB,
opSimHDF=opsimDBHDF, boundLens=boundLens,
numSamps=1, name='testingrless24DB', constraints='r_ab < 24')
In [12]:
rless24db.aggregateResults()
In [9]:
fulldb.df
Out[9]:
In [13]:
rless24db.df
Out[13]:
In [ ]: