In [7]:
from os import environ

environ['optimizer'] = 'Adam'
environ['num_workers']= '2'
environ['batch_size']= str(2048)
environ['n_epochs']= '800'
environ['batch_norm']= 'True'
environ['loss_func']='SMAPE'
environ['layers'] = '800 700 600 350 200 180'
environ['dropouts'] = '0.1 '* 6
environ['lr'] = '1e-03'
environ['log'] = 'False'
environ['weight_decay'] = '0.011'
environ['cuda_device'] ='cuda:5'
environ['dataset'] = 'data/speedup_dataset2.pkl'

%run utils.ipynb

In [8]:
train_dl, val_dl, test_dl = train_dev_split(dataset, batch_size, num_workers, log=log)

db = fai.basic_data.DataBunch(train_dl, val_dl, test_dl, device=device)


function329_schedule_13
0
{'computations': {'computations_array': [{'comp_id': 1,
                                          'lhs_data_type': 'p_int32',
                                          'loop_iterators_ids': [2, 3],
                                          'operations_histogram': [[5, 3, 0, 0],
                                                                   [0, 0, 0, 0],
                                                                   [0, 0, 0, 0],
                                                                   [0, 0, 0, 0],
                                                                   [0, 0, 0, 0],
                                                                   [0, 0, 0, 0],
                                                                   [0,
                                                                    0,
                                                                    0,
                                                                    0]],
                                          'rhs_accesses': {'accesses': [{'access': [[1,
                                                                                     0,
                                                                                     0],
                                                                                    [0,
                                                                                     1,
                                                                                     1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     0],
                                                                                    [0,
                                                                                     1,
                                                                                     -1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     1],
                                                                                    [0,
                                                                                     1,
                                                                                     0]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     1],
                                                                                    [0,
                                                                                     1,
                                                                                     1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     1],
                                                                                    [0,
                                                                                     1,
                                                                                     -1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     -1],
                                                                                    [0,
                                                                                     1,
                                                                                     0]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     -1],
                                                                                    [0,
                                                                                     1,
                                                                                     1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     -1],
                                                                                    [0,
                                                                                     1,
                                                                                     -1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     0],
                                                                                    [0,
                                                                                     1,
                                                                                     0]],
                                                                         'comp_id': 0}],
                                                           'n': 9}}],
                  'n': 1},
 'inputs': {'inputs_array': [{'data_type': 'p_int32',
                              'input_id': 0,
                              'loop_iterators_ids': [0, 1]}],
            'n': 1},
 'iterators': {'iterators_array': [{'it_id': 2,
                                    'lower_bound': 1,
                                    'upper_bound': 1048575},
                                   {'it_id': 3,
                                    'lower_bound': 1,
                                    'upper_bound': 63},
                                   {'it_id': 0,
                                    'lower_bound': 0,
                                    'upper_bound': 1048576},
                                   {'it_id': 1,
                                    'lower_bound': 0,
                                    'upper_bound': 64}],
               'n': 4},
 'loops': {'loops_array': [{'assignments': {'assignments_array': [], 'n': 0},
                            'loop_id': 0,
                            'loop_it': 2,
                            'parent': -1,
                            'position': 0},
                           {'assignments': {'assignments_array': [{'id': 1,
                                                                   'position': 0}],
                                            'n': 1},
                            'loop_id': 1,
                            'loop_it': 3,
                            'parent': 0,
                            'position': 0}],
           'n': 2},
 'seed': 329,
 'type': 2}
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
/data/scratch/henni-mohammed/speedup_model/src/data/loop_ast.py in tile(self, loop_id, factor)
    260         try:
--> 261             while loop.iterator.id != loop_id:
    262                 loop = loop.children[0]

AttributeError: 'Computation' object has no attribute 'iterator'

During handling of the above exception, another exception occurred:

NameError                                 Traceback (most recent call last)
<ipython-input-8-ccbb4c277821> in <module>
----> 1 train_dl, val_dl, test_dl = train_dev_split(dataset, batch_size, num_workers, log=log)
      2 
      3 db = fai.basic_data.DataBunch(train_dl, val_dl, test_dl, device=device)

<ipython-input-7-fa1393f8fd16> in train_dev_split(dataset, batch_size, num_workers, log, seed)
    108 
    109     test_size = validation_size = 10000
--> 110     ds = DatasetFromPkl(dataset, maxsize=None, log=log)
    111 
    112     indices = range(len(ds))

/data/scratch/henni-mohammed/speedup_model/src/data/dataset.py in __init__(self, filename, normalized, log, maxsize)
    102             program = self.programs[self.program_indexes[i]]
    103 
--> 104             self.X.append(program.add_schedule(self.schedules[i]).__array__())
    105 
    106 

/data/scratch/henni-mohammed/speedup_model/src/data/loop_ast.py in add_schedule(self, schedule)
    273     def add_schedule(self, schedule):
    274 
--> 275         return Loop_AST(self.name, self.dict_repr, schedule)
    276 
    277     def dtype_to_int(self, dtype):

/data/scratch/henni-mohammed/speedup_model/src/data/loop_ast.py in __init__(self, name, dict_repr, schedule)
    218 
    219         if self.schedule:
--> 220             self.apply_schedule()
    221 
    222 

/data/scratch/henni-mohammed/speedup_model/src/data/loop_ast.py in apply_schedule(self)
    232             if type_ == 'tiling' and binary_schedule[1] == 1:
    233                 for loop_id, factor in zip(params, factors):
--> 234                     self.tile(loop_id, factor)
    235 
    236             elif type_ == 'interchange' and binary_schedule[0] == 1:

/data/scratch/henni-mohammed/speedup_model/src/data/loop_ast.py in tile(self, loop_id, factor)
    269             from pprint import pprint
    270             pprint(self.dict_repr)
--> 271             exit(1)
    272 
    273     def add_schedule(self, schedule):

NameError: name 'exit' is not defined

In [3]:
input_size = train_dl.dataset.X.shape[1]
output_size = train_dl.dataset.Y.shape[1]


model = None 

if batch_norm:
    model = Model_BN(input_size, output_size, hidden_sizes=layers_sizes, drops=drops)
else:
    model = Model(input_size, output_size)
    
if loss_func == 'MSE':
    criterion = nn.MSELoss()
elif loss_func == 'MAPE':
    criterion = mape_criterion
elif loss_func == 'SMAPE':
    criterion = smape_criterion

l = fai.Learner(db, model, loss_func=criterion, metrics=[mape_criterion, rmse_criterion])

if optimizer == 'SGD':
    l.opt_func = optim.SGD

In [4]:
l = l.load(f"r_speedup_{optimizer}_batch_norm_{batch_norm}_{loss_func}_nlayers_{len(layers_sizes)}_log_{log}")

In [4]:
l.lr_find()
l.recorder.plot()


LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.

In [4]:
l.fit_one_cycle(int(environ['n_epochs']), float(environ['lr']))


Total time: 38:17

epoch train_loss valid_loss mape_criterion rmse_criterion
1 104.661942 102.300491 287.807861 3.067903
2 95.419327 96.622795 343.448120 3.159903
3 93.724846 95.814415 358.764221 3.266283
4 92.683197 94.970634 364.280121 4.167940
5 79.877151 75.469284 394.043427 4.615024
6 72.907417 71.566765 378.542206 4.514072
7 69.528313 69.789955 373.386292 4.091285
8 67.515762 69.398399 227.227951 3.597232
9 66.386208 67.851303 332.230042 3.537573
10 65.443367 67.711411 187.448212 2.668400
11 64.757523 67.260681 169.101669 2.806999
12 64.312454 65.746140 181.799454 3.179370
13 63.408176 64.634590 179.363205 3.313148
14 63.041748 64.982162 178.473602 3.392530
15 62.523315 64.177925 172.089874 2.984686
16 62.235004 64.324585 168.823624 3.476168
17 61.862000 64.127190 195.083923 4.007714
18 61.721405 63.234776 150.461853 2.163457
19 61.201363 63.207737 153.427155 2.036991
20 60.979752 62.761513 158.769318 2.374927
21 60.773315 61.511395 152.390259 2.316116
22 60.207146 60.094212 143.462357 1.790007
23 59.448761 60.113243 154.291367 2.070540
24 59.000278 59.351776 147.305847 1.757399
25 58.414322 57.866798 140.695786 1.498913
26 57.787773 57.987343 145.372757 1.494222
27 57.437630 59.036324 149.114487 1.439605
28 57.133759 59.246983 149.314529 1.448927
29 56.873142 56.965801 153.228333 1.455193
30 56.486229 57.941837 156.950516 1.327109
31 56.154205 58.173969 156.745132 1.365756
32 55.974373 57.153961 145.573135 1.335501
33 55.483322 56.434643 152.174332 1.304802
34 55.551369 55.601543 149.132156 1.300819
35 55.141087 54.656437 143.004578 1.306897
36 54.809830 53.274967 139.050888 1.292370
37 54.907505 54.076538 142.654037 1.332063
38 54.504459 55.915386 143.768600 1.353823
39 54.128902 53.436577 135.896545 1.325468
40 54.017067 53.831738 150.185028 1.290974
41 53.862091 55.840027 147.336594 1.314821
42 53.527283 54.076736 141.768478 1.336015
43 53.973713 52.882977 141.822510 1.273595
44 52.898853 53.404026 131.541824 1.294747
45 53.102123 52.277805 141.648468 1.245796
46 53.246372 52.223602 129.714691 1.274027
47 52.873920 53.640949 146.999481 1.241097
48 52.327316 51.982662 135.208038 1.196274
49 51.993839 51.716045 143.790405 1.167353
50 50.055206 49.669273 133.191376 1.143145
51 48.487289 48.507362 124.528709 1.138957
52 47.273788 50.232986 136.484650 1.126437
53 45.483864 45.788563 107.178497 1.091820
54 44.432549 45.138218 109.491188 1.047012
55 43.645912 44.297531 98.094994 1.028188
56 44.058010 44.367390 100.613739 1.031231
57 43.517994 44.877281 111.165077 0.984178
58 42.035976 43.166622 99.819710 0.931742
59 41.363792 47.001892 116.207237 0.945334
60 41.205067 40.212219 76.860603 0.928649
61 40.342945 40.350357 88.598007 0.842591
62 39.861126 43.915749 96.860260 0.951487
63 41.569279 49.137905 138.928375 1.038956
64 38.656174 38.269722 68.168587 0.821211
65 37.006947 38.081745 69.554688 0.809022
66 37.259399 42.006481 95.898788 0.919283
67 35.104584 33.845257 55.630444 0.751297
68 39.174126 45.108814 110.103287 0.879789
69 35.597847 40.795883 87.066353 0.849809
70 35.188492 45.994675 116.838234 0.895428
71 35.482456 41.519245 97.868591 0.838134
72 33.699818 41.204712 89.737938 0.779851
73 33.783867 40.763058 90.355843 0.799976
74 32.244606 36.947170 68.910339 0.784361
75 32.478546 39.241833 90.998299 0.794771
76 31.815594 37.286182 73.203354 0.767091
77 33.981007 46.702396 137.475922 1.037940
78 31.130989 39.411957 83.975334 0.777157
79 30.922899 40.445171 83.067902 0.791278
80 31.417219 38.267086 76.217957 0.783134
81 30.416584 37.150749 67.254387 0.795933
82 30.664265 42.865334 111.566460 0.906735
83 30.287697 37.563713 80.684685 0.763742
84 29.169527 37.883106 83.988747 0.785183
85 29.190128 35.485405 70.298973 0.761887
86 29.431238 37.160667 76.099060 0.770274
87 29.209200 36.153896 72.404541 0.765580
88 29.188496 34.842072 64.552872 0.753097
89 28.581736 34.654217 63.075729 0.726597
90 28.907957 38.962070 82.353249 0.789698
91 28.645546 36.130527 70.361160 0.778512
92 29.307817 40.542877 96.766304 0.826857
93 28.179117 37.192131 80.648216 0.781014
94 27.754902 35.200527 68.819534 0.747284
95 27.376822 41.386070 90.189461 0.855115
96 27.022631 36.052956 69.341690 0.773236
97 26.875269 35.434193 68.635651 0.799628
98 26.828203 35.232845 63.945633 0.729966
99 26.919025 34.566429 64.825203 0.774730
100 29.198364 41.009350 106.314301 0.906549
101 26.292440 30.752172 55.480087 0.736762
102 26.095945 35.301109 73.481239 0.757626
103 25.602512 34.754528 67.606255 0.814907
104 25.496876 34.207527 71.713341 0.757177
105 25.737532 44.820004 133.914154 0.959571
106 26.491989 38.033924 79.535103 0.842651
107 25.981333 39.242008 105.115875 0.862244
108 25.157051 32.971642 63.425369 0.784090
109 24.558952 33.757038 60.602299 0.739804
110 24.820776 33.399345 63.863464 0.750734
111 24.540861 30.890497 56.400993 0.727919
112 24.783148 39.267643 85.883987 0.848621
113 24.548325 33.016968 68.912323 0.764989
114 23.981777 36.378086 85.981781 0.826478
115 23.759510 33.783676 63.932438 0.753709
116 24.417717 31.576559 55.537151 0.719969
117 23.784721 34.481113 72.623199 0.757415
118 24.032053 35.183781 68.994904 0.786393
119 23.268295 33.948925 73.139702 0.741098
120 23.819862 33.930164 73.061981 0.767480
121 23.345638 35.781086 79.135872 0.832450
122 23.038601 36.972401 83.576294 0.910006
123 22.931234 30.959219 53.397114 0.746959
124 22.582979 37.205772 88.250519 0.823620
125 22.723442 34.164982 73.145271 0.765667
126 22.312342 33.039394 61.369057 0.767549
127 22.131725 33.849812 68.069473 0.770734
128 22.783657 43.646027 135.995071 1.051347
129 22.267717 31.346838 53.809063 0.745337
130 22.263374 34.920830 73.171074 0.788506
131 22.826796 37.179886 91.977150 0.830106
132 21.739532 32.454044 64.530495 0.771560
133 21.694023 35.031502 69.640236 0.925748
134 21.653934 31.773487 58.949425 0.785699
135 21.722937 36.371319 75.647873 0.814283
136 21.473295 36.882618 82.766670 0.837424
137 21.381804 32.407341 63.721237 0.765168
138 21.037113 32.611954 63.101082 0.765846
139 21.464874 33.156094 59.370163 0.723302
140 20.891520 37.794147 112.588371 0.894038
141 20.496185 32.480045 59.794239 0.694864
142 20.548031 37.449398 84.702400 0.822456
143 20.210930 38.629181 100.650192 0.850540
144 20.725042 37.834850 85.490715 0.858039
145 20.189522 35.133160 85.189323 0.813445
146 20.153017 39.193287 96.159355 0.879081
147 19.847898 29.531868 56.426586 0.677601
148 19.761581 42.129154 120.716011 1.034466
149 19.672522 32.375713 64.398384 0.713867
150 20.593376 34.283028 62.555462 0.777457
151 19.745571 36.027874 78.318108 0.776213
152 19.812349 33.375740 61.304756 0.787887
153 19.362700 32.409920 60.848419 0.735114
154 19.570093 34.876751 71.047813 0.810617
155 19.425051 33.068626 66.291054 0.742795
156 19.045027 37.307568 79.043678 0.866234
157 18.865076 37.361233 81.721832 0.833951
158 19.093390 33.356152 67.107307 0.788253
159 19.307087 30.742373 62.755524 0.688908
160 18.984171 35.436932 73.017296 0.790231
161 18.632318 40.033539 101.983307 0.811729
162 18.878891 36.239338 98.618774 0.979079
163 18.403385 35.462189 88.138664 0.795846
164 18.106642 35.180569 74.765259 0.739391
165 18.505413 33.306362 65.094505 0.745173
166 19.002251 40.978645 100.525909 0.931971
167 18.192255 33.429272 72.455231 0.727496
168 18.261755 37.701862 95.572548 0.831773
169 18.915636 42.487732 117.156212 1.156578
170 18.801580 37.112053 86.959740 0.919734
171 18.571062 35.175114 77.328072 0.767351
172 18.298080 36.872448 82.654427 0.837591
173 17.755650 34.374783 56.978531 0.736356
174 17.878935 38.829765 90.509659 0.848518
175 18.045612 35.368958 69.763222 0.737493
176 17.755033 31.598597 61.123852 0.711139
177 17.811846 32.907314 69.751549 0.822032
178 18.185652 36.846367 77.251816 0.809593
179 17.717474 37.120842 86.447746 0.866205
180 17.403942 37.230167 74.223022 0.807901
181 17.841801 39.048515 79.994209 0.913625
182 17.542055 41.842113 96.250389 0.907040
183 18.061693 38.794624 99.635231 0.921103
184 17.664684 30.544815 52.698326 0.684932
185 17.466208 33.475067 66.160286 0.794323
186 17.048010 35.554726 72.023987 0.797254
187 17.120783 37.959545 77.671486 1.002174
188 17.363098 39.000778 93.504486 0.907761
189 17.242704 36.641697 70.219223 0.772733
190 17.332376 40.995010 97.935852 0.902258
191 16.605289 37.417267 70.279465 0.707466
192 17.778837 37.491486 86.326897 0.961626
193 17.147409 31.587303 60.246082 0.724864
194 17.209435 38.813282 81.308617 0.862118
195 16.874672 40.000622 84.400436 0.823044
196 16.590700 33.899055 61.440830 0.699945
197 16.207685 32.210293 60.616905 0.743438
198 16.513975 33.513378 54.242081 0.674870
199 16.457279 33.936489 67.075310 0.771241
200 16.607021 33.235649 53.912506 0.725068
201 16.226772 30.777582 54.733650 0.671081
202 16.295120 34.147949 57.875702 0.719673
203 16.576664 40.671227 93.130890 0.851940
204 16.225008 29.280163 52.084255 0.682600
205 17.322882 35.688496 79.430199 0.859963
206 16.229267 30.362782 53.395069 0.675089
207 16.223068 31.804893 63.919720 0.765062
208 16.109938 31.523045 62.788395 0.738076
209 15.795094 33.030106 60.178982 0.686414
210 16.262978 36.841732 70.966347 0.751130
211 15.921555 40.079033 87.133110 0.813513
212 15.913036 36.886642 67.965874 0.834556
213 16.228205 35.550343 64.047379 0.701782
214 16.298664 31.984425 62.919086 0.747795
215 16.066477 36.681026 68.726448 0.868704
216 15.699594 35.238907 59.792511 0.801825
217 15.920628 36.859989 69.129364 0.754251
218 16.513695 36.387360 66.647827 0.831069
219 16.284431 39.403873 93.459244 0.933154
220 15.924437 44.703228 107.637184 0.979679
221 15.843354 39.728413 81.514198 0.846963
222 15.688183 40.093975 73.018761 0.847344
223 15.668453 38.013943 67.111938 0.822748
224 15.494933 32.541557 64.056778 0.785795
225 15.463197 34.010338 60.449951 0.738161
226 15.400600 38.782284 90.250053 0.843754
227 15.586081 33.701286 59.488392 0.837940
228 15.433411 36.798489 73.959267 0.909736
229 15.491731 39.602070 71.113853 1.013086
230 15.391937 37.482006 75.331535 0.776898
231 15.435884 38.652855 89.074577 0.836603
232 15.626000 35.137573 64.335411 0.752011
233 15.306082 39.634670 72.660141 0.917822
234 15.355454 32.865147 54.710400 0.789049
235 15.537284 37.812805 76.879021 0.940041
236 15.382627 35.241764 63.682838 0.807723
237 15.830091 40.551067 92.595360 0.974112
238 15.334457 34.133713 69.850311 0.747547
239 15.226704 39.387295 86.528572 0.826174
240 15.211497 35.794567 60.595177 0.834443
241 14.831562 36.866543 66.555702 0.865173
242 15.394850 35.404327 72.592766 0.803318
243 15.180771 32.891193 46.009857 0.764933
244 14.832344 37.297852 64.791862 0.774455
245 14.886884 37.178677 77.568916 0.945506
246 15.114301 37.307392 80.158997 0.812299
247 15.128016 35.778633 84.826706 0.897786
248 15.161243 38.432114 69.448364 0.790683
249 14.738536 33.209286 53.236851 0.753746
250 14.930013 38.159508 83.439903 0.841344
251 14.884100 30.120174 49.279636 0.697899
252 14.682936 38.194454 96.485626 0.820101
253 14.780913 35.699883 72.489815 0.830659
254 14.854465 36.435501 69.882416 0.809575
255 14.783436 40.635185 85.237053 0.913232
256 14.728690 35.541378 58.406082 0.758300
257 14.614870 37.259666 58.624901 0.786327
258 14.479601 34.260586 55.653889 0.752553
259 14.707333 37.941208 70.464417 0.931919
260 15.263060 33.869690 63.190929 0.776068
261 14.630364 36.586292 76.607384 0.854821
262 14.916113 33.110016 59.844917 0.945104
263 14.362852 36.640053 66.169907 0.854198
264 14.512224 35.944500 62.924007 0.815120
265 14.518485 35.471848 68.819427 0.837024
266 14.372441 35.790531 60.089851 0.850061
267 14.297349 42.501862 85.678368 1.031195
268 14.232774 38.601162 70.710434 0.954227
269 14.197763 34.126308 56.835575 0.731181
270 14.483047 47.907314 125.127914 1.218717
271 14.358400 40.992931 89.989151 0.912991
272 14.276005 37.163986 66.525978 0.792247
273 14.210490 36.434368 63.272625 0.850080
274 14.159444 44.882515 91.975616 1.067337
275 14.065702 39.301601 73.856964 0.855303
276 14.217259 38.020649 67.462250 0.911972
277 14.303395 38.757404 78.539825 0.899052
278 14.090721 35.979431 63.161999 0.859901
279 14.020180 38.949642 73.715523 0.900332
280 14.180801 40.710384 77.671898 1.073529
281 14.162584 37.344551 66.635529 0.968039
282 14.120151 36.017788 61.244427 0.808834
283 14.066149 41.633064 96.979980 0.917238
284 13.708919 38.084175 76.774963 0.782097
285 13.701283 34.544674 67.740196 0.740298
286 14.121503 40.151852 78.157623 0.851001
287 13.746382 41.040176 79.097305 1.008487
288 14.025649 34.821995 60.317513 0.742577
289 13.799110 36.059208 61.488655 0.848807
290 13.765931 38.428928 79.509003 0.914153
291 13.690766 38.088482 66.529884 1.011872
292 13.838598 36.949024 66.586395 0.840802
293 13.717721 35.707787 59.181881 0.801271
294 13.687765 33.001259 44.679905 0.788051
295 13.792114 40.192196 74.919266 0.847585
296 13.686102 41.424580 73.893829 0.957933
297 13.661887 35.499836 59.638813 0.749577
298 13.750915 35.873219 59.855495 0.868022
299 14.228426 34.791737 56.038673 0.745508
300 13.595055 33.988583 53.038189 0.772725
301 13.597076 36.386162 60.771076 0.810506
302 13.471545 37.539658 60.308643 0.823721
303 13.574639 39.752590 71.828415 1.088241
304 13.920475 41.222118 94.977074 0.984618
305 13.732122 36.738060 57.242893 0.841365
306 13.862490 37.092247 77.337212 0.967600
307 13.850560 33.499344 52.776295 0.769674
308 13.624640 37.554020 65.077057 0.810833
309 13.426353 43.089401 73.330788 0.992391
310 13.450548 37.321701 60.932724 0.748675
311 13.483907 38.794670 84.988472 0.891129
312 13.798834 35.658306 63.797874 0.823758
313 13.433642 32.610828 50.846367 0.731271
314 13.343544 32.993988 48.117706 0.767232
315 13.474988 36.691113 63.691349 0.898449
316 13.429296 38.860413 83.664520 1.031983
317 13.361508 35.176506 56.815937 0.826919
318 13.278620 39.751789 69.268814 1.064779
319 13.307871 35.232132 57.942730 0.831965
320 13.276241 36.155300 58.058113 0.821056
321 13.240404 33.182152 54.350239 0.806310
322 13.175077 32.868008 54.302299 0.803044
323 13.213413 32.984749 61.462555 0.823345
324 13.371449 37.937538 64.657791 0.875779
325 13.046414 36.068367 55.396469 0.806581
326 13.225363 36.366241 61.848137 0.878051
327 13.157030 35.214005 59.394054 0.781056
328 13.134717 38.963882 81.157677 0.904028
329 13.073193 41.658489 75.447479 0.969161
330 13.090325 33.283485 55.087288 0.738971
331 13.296698 36.199852 52.306442 0.823753
332 12.995165 36.111629 54.676262 0.848354
333 13.002842 37.476299 73.416077 1.084120
334 13.161036 38.306271 63.197983 1.130297
335 13.103834 33.749607 58.727905 0.879297
336 13.002410 34.198273 53.945587 0.780956
337 12.858998 38.131855 61.478062 0.906925
338 13.144301 41.692314 94.228462 1.098698
339 12.994774 36.444580 64.170647 0.848261
340 12.978182 33.547558 51.029385 0.807135
341 12.942981 34.245819 56.936619 0.794053
342 13.055573 35.550556 52.780064 0.818262
343 13.013928 38.767193 65.546707 0.864412
344 12.866686 34.855820 52.471138 0.797303
345 12.878273 36.959450 57.847755 0.868023
346 12.816094 36.925980 69.540977 0.864080
347 12.851155 39.476318 62.689823 0.911457
348 12.788852 34.329052 59.492905 0.849512
349 12.791994 37.979401 71.137390 1.068153
350 12.813991 37.190056 64.070984 0.892292
351 12.796708 37.938084 55.218567 0.886561
352 12.867328 42.055801 66.523285 1.083743
353 12.742359 35.659542 55.456100 0.864327
354 12.759057 38.184986 62.784393 0.922698
355 12.609703 40.404392 80.213448 0.853581
356 12.634410 36.687870 54.765980 0.836707
357 12.669363 33.221905 49.995766 0.781338
358 12.808789 37.109089 60.381718 1.026994
359 12.849763 34.593662 51.261200 0.813038
360 12.704800 40.702755 76.830826 1.118681
361 12.774818 32.621395 45.870682 0.705057
362 12.820094 37.081005 61.898838 0.785278
363 12.538405 33.900280 59.709343 0.812203
364 12.795860 37.484512 65.842865 0.897190
365 12.756648 33.978382 58.504395 0.972324
366 12.580325 35.424702 71.121269 0.976936
367 12.651705 32.676121 49.024632 0.753516
368 12.580230 34.890976 58.922325 0.809124
369 12.632515 34.719036 58.124001 0.830313
370 12.639567 35.679478 52.310707 0.768535
371 12.575728 35.321842 58.099461 0.799447
372 12.619104 37.118923 61.161499 0.900874
373 12.565275 36.026432 57.729786 0.820253
374 12.490048 35.925011 59.125061 0.864539
375 12.570393 33.363773 57.605824 0.787726
376 12.449144 32.254482 48.738400 0.757104
377 12.311611 32.634571 45.483692 0.801913
378 12.426764 33.488895 53.547668 0.757552
379 12.469316 37.325195 66.363983 0.880980
380 12.719226 36.013229 55.676968 0.851353
381 12.528697 35.423668 53.485611 0.859685
382 12.501586 36.498070 63.269669 0.812368
383 12.361664 34.617161 53.280651 0.822256
384 12.323334 34.713444 54.018089 0.801539
385 12.269219 33.173176 48.485111 0.790735
386 12.250194 35.126713 57.041138 0.797915
387 12.331409 35.184475 57.862411 0.855689
388 12.298031 33.965019 54.458473 0.797578
389 12.303589 33.125614 48.859356 0.946284
390 12.239066 35.905819 56.073475 0.822793
391 12.467511 32.162380 43.686119 0.697829
392 12.286215 36.352661 61.190887 0.834126
393 12.211934 37.417011 67.354195 0.825209
394 12.502189 34.833328 56.821518 0.839059
395 12.167605 31.657478 44.316624 0.720613
396 12.202771 34.178574 56.687813 0.785390
397 12.206116 34.017262 47.890656 0.779165
398 12.386162 36.233345 57.043720 0.833403
399 12.288252 33.675564 52.371277 0.773573
400 12.199110 34.479584 54.236267 0.765616
401 12.106255 33.104267 41.109093 0.753728
402 12.192243 37.162727 60.973217 0.877134
403 12.166115 36.112846 62.293644 0.876282
404 12.051862 34.599560 56.568539 0.831527
405 12.152299 35.801731 56.881062 0.939389
406 12.071044 34.257393 55.462967 0.768282
407 12.301889 33.355858 46.524151 0.811592
408 11.988328 35.438625 55.166687 0.862791
409 12.168221 36.728107 62.928780 0.915328
410 12.041191 34.772251 61.766026 0.891146
411 12.104047 32.878361 56.299400 0.769873
412 12.152422 33.359688 51.822353 0.735358
413 12.132710 34.363724 46.458733 0.788493
414 12.005080 31.935381 50.359497 0.745705
415 12.007692 31.619043 54.513432 0.744616
416 11.938269 32.662510 55.223244 0.770022
417 11.943339 34.436939 53.123196 0.820285
418 12.150605 35.462070 56.342068 0.756428
419 12.002385 32.409164 47.016636 0.768401
420 12.045143 34.849861 58.498520 0.848078
421 11.965784 34.549320 50.797157 0.833625
422 11.943920 33.853745 56.128063 0.853530
423 11.880611 34.870552 54.711914 0.784233
424 11.995658 32.782089 48.833664 0.821170
425 11.914958 31.920240 51.242035 0.776090
426 11.805329 30.355015 42.911594 0.711182
427 11.935860 33.408634 50.508858 0.749738
428 11.772082 34.430420 50.202419 0.809431
429 11.736680 33.981133 54.370186 0.755592
430 11.794690 32.499371 51.128971 0.743649
431 11.847500 31.108654 44.055923 0.693529
432 11.816026 35.574501 53.410114 0.848332
433 11.903443 34.996403 53.236588 0.845075
434 11.948842 32.947636 54.303482 0.711090
435 12.243643 36.320072 58.118374 0.933348
436 11.913749 34.506680 54.372795 0.860175
437 11.837273 38.140785 63.231224 0.895437
438 11.779114 34.939205 54.261112 0.723276
439 11.615091 33.369667 55.079437 0.756075
440 11.931456 34.537476 60.722855 0.948659
441 11.787133 35.227863 57.149357 1.033259
442 11.780608 31.142134 47.562675 0.805610
443 11.636442 32.187580 48.354527 0.770644
444 11.637978 32.323700 46.854424 0.702546
445 11.903340 35.190704 50.646305 0.852460
446 11.571512 33.237946 56.689281 0.777469
447 11.599289 33.937153 52.734787 0.755253
448 11.579601 32.428337 47.396729 0.811529
449 11.744120 32.505245 51.765270 0.840782
450 11.666202 34.824070 57.006863 0.816639
451 11.648829 34.638466 59.238213 0.882056
452 11.793554 30.710043 45.856174 0.694261
453 11.659192 33.148499 54.069881 0.805099
454 11.637027 33.141830 55.173813 0.788581
455 11.636176 29.656418 40.620483 0.758811
456 11.555015 31.963772 46.010929 0.753087
457 11.522563 32.628345 40.730591 0.791435
458 11.672043 35.127548 55.553432 0.870043
459 11.552064 34.028255 50.035458 0.825540
460 11.573618 32.549507 47.255211 0.773338
461 11.536166 37.656078 67.344048 0.983174
462 11.485510 34.905525 53.082489 0.876960
463 12.100968 32.509598 45.874111 0.738427
464 11.645988 35.274570 53.998070 0.845883
465 11.577806 35.863506 53.654526 0.889842
466 11.482991 36.541199 54.633507 0.946504
467 11.419836 35.270477 57.667664 0.860766
468 11.445416 32.532867 45.412918 0.808560
469 11.609118 36.200794 53.069351 0.884522
470 11.508022 31.802618 45.102032 0.766375
471 11.555008 32.928139 47.937088 0.790140
472 11.390872 34.186924 49.535130 0.859464
473 11.388084 35.261086 57.839161 0.829830
474 11.583447 35.107101 51.975403 0.859695
475 11.494924 31.022924 49.652603 0.717981
476 11.468680 34.738056 52.113766 0.873243
477 11.391685 32.519497 52.387321 0.794116
478 11.339947 32.575859 46.261452 0.784512
479 11.333695 33.122242 46.442688 0.766425
480 11.354995 33.711990 52.789104 0.851568
481 11.302698 33.098431 45.819736 0.840131
482 11.348128 33.734245 47.610298 0.811764
483 11.292136 34.134396 47.622189 0.842849
484 11.374100 34.323856 50.191330 0.806330
485 11.306168 32.635502 44.956974 0.786807
486 11.278807 33.210289 54.042301 0.774301
487 11.253035 32.103420 49.920570 0.766805
488 11.377320 33.151814 45.958019 0.806843
489 11.287739 31.858513 46.511711 0.782634
490 11.293363 32.641758 48.649235 0.813386
491 11.299816 33.480637 49.293549 0.859578
492 11.321927 32.291782 51.565430 0.823631
493 11.156326 31.785048 43.623890 0.801076
494 11.235230 32.648998 55.805870 0.824433
495 11.259790 34.124096 49.528847 0.877523
496 11.215596 34.206402 45.078144 0.862263
497 11.323204 33.656700 56.458630 0.856608
498 11.231325 32.744850 51.818192 0.813148
499 11.142723 31.251940 47.446789 0.781808
500 11.108985 30.265013 44.391117 0.739530
501 11.166247 34.717888 53.372711 0.837495
502 11.165710 31.448730 45.793495 0.824465
503 11.121704 32.676964 50.460670 0.811395
504 11.204881 33.975521 54.055832 0.895764
505 11.081209 34.690880 55.574245 0.847157
506 11.057419 33.189896 48.075176 0.779893
507 11.131548 29.846952 39.400620 0.726093
508 11.080618 35.202263 51.126720 0.861672
509 11.100417 31.947847 49.098103 0.814798
510 11.080097 31.969969 43.697010 0.803608
511 11.109570 34.695049 51.994610 0.864256
512 11.168578 33.182987 45.564724 0.803472
513 11.033402 36.209171 55.012287 0.869068
514 11.052049 35.058483 55.960583 0.845634
515 10.939099 31.855934 49.691120 0.835719
516 11.056652 32.300129 45.363037 0.753454
517 11.091005 33.233646 50.874031 0.770722
518 10.956681 30.811356 42.861607 0.735481
519 10.981388 31.026829 44.894558 0.785294
520 11.004642 32.647758 46.569706 0.823831
521 10.953099 34.234478 46.780113 0.822051
522 10.973938 31.475555 43.187763 0.757077
523 11.007047 31.275043 42.730217 0.802831
524 10.918464 32.520325 47.954807 0.805515
525 10.886256 32.177811 40.442772 0.752994
526 10.892241 32.174744 51.115650 0.812298
527 10.813769 33.280319 48.492802 0.819348
528 10.909218 30.996675 47.737335 0.793023
529 10.918257 31.962088 45.065788 0.801840
530 10.900455 33.999947 45.241333 0.822240
531 10.880502 32.474720 46.153351 0.731042
532 10.864187 31.137716 43.594692 0.735325
533 10.884331 29.886957 42.479042 0.750811
534 11.131597 31.612997 43.821152 0.800037
535 10.910157 33.998192 52.329884 0.832512
536 10.876169 31.436926 46.153633 0.791093
537 10.821349 32.313305 43.080772 0.761663
538 10.691327 31.478374 44.661980 0.807908
539 10.733187 32.746445 46.056431 0.791561
540 10.881904 31.384829 42.909969 0.732672
541 10.812654 32.902493 47.176476 0.758470
542 10.676754 31.973196 41.508629 0.762530
543 10.729968 30.537022 42.985134 0.754099
544 10.736858 34.341480 48.234833 0.872449
545 10.712658 32.284100 43.297245 0.806100
546 10.783628 30.345379 41.466480 0.757943
547 10.738046 30.782459 40.055653 0.706487
548 10.677889 29.311604 38.942455 0.702269
549 10.657338 33.291080 49.869057 0.842457
550 10.889813 32.747063 45.450943 0.825145
551 10.745845 31.188248 42.008823 0.806400
552 10.660393 33.461025 45.837399 0.882209
553 10.612618 32.400742 44.933666 0.829561
554 10.671711 30.866146 41.817032 0.788256
555 10.718171 33.100689 43.650986 0.816862
556 10.687399 32.339050 47.633419 0.830143
557 10.650363 33.068401 45.152863 0.796859
558 10.658573 31.572496 46.176575 0.850385
559 10.670061 31.468437 43.738743 0.798255
560 10.579093 31.051060 41.064877 0.722195
561 10.547851 32.885674 41.851555 0.786262
562 10.569036 30.776751 42.416008 0.807351
563 10.614475 31.781672 41.541836 0.755998
564 10.582497 32.539455 45.294250 0.834737
565 10.616549 32.310062 45.778389 0.810500
566 10.826120 32.827736 46.637016 0.809630
567 10.542817 35.125851 52.375713 0.841108
568 10.548382 30.902235 43.887844 0.837888
569 10.540369 33.409454 46.572956 0.874809
570 10.436017 31.887850 43.440018 0.800166
571 10.564009 32.483303 50.893322 0.829127
572 10.586737 32.004173 49.518562 0.829193
573 10.549219 31.305660 42.238922 0.788435
574 10.540456 30.608231 42.825375 0.806174
575 10.559407 32.871227 44.891594 0.841798
576 10.577321 31.312138 44.013927 0.760933
577 10.525023 31.896362 44.472618 0.831106
578 10.457129 32.193584 43.791088 0.811496
579 10.528196 30.082069 41.964920 0.781214
580 10.493624 32.932198 40.529228 0.806866
581 10.503120 30.846781 44.609730 0.764951
582 10.519255 30.212406 40.270134 0.705149
583 10.511444 31.407768 44.606392 0.784281
584 10.484232 32.019417 42.804447 0.771105
585 10.473190 31.936001 43.349918 0.800597
586 10.459234 31.801416 41.099403 0.757221
587 10.373753 31.679941 43.897717 0.822217
588 10.370695 32.181934 42.148083 0.758530
589 10.486632 32.252773 45.361038 0.820570
590 10.415092 31.944538 43.218761 0.798378
591 10.418789 32.272865 43.792267 0.816576
592 10.376585 31.896963 41.935593 0.767692
593 10.412916 32.306396 44.512131 0.802180
594 10.337895 32.150246 39.602020 0.750949
595 10.334853 32.682358 43.564617 0.811374
596 10.395268 31.293781 44.229626 0.742424
597 10.328351 30.480072 42.357971 0.761181
598 10.301076 32.719143 45.066521 0.818073
599 10.393769 31.476978 41.709400 0.772905
600 10.309531 30.193087 41.269161 0.771917
601 10.326076 29.917000 44.026421 0.743222
602 10.300266 30.687998 42.873367 0.753437
603 10.182746 32.722397 45.707802 0.753374
604 10.308241 33.241085 43.662582 0.790943
605 10.338623 31.647640 42.061272 0.778817
606 10.302413 31.873144 42.941525 0.794929
607 10.184274 32.177017 41.767799 0.781455
608 10.272506 30.825581 40.719013 0.747567
609 10.248549 32.106339 43.710194 0.780104
610 10.240237 32.319740 44.257793 0.784601
611 10.282104 32.756092 45.696377 0.768920
612 10.390173 31.231035 42.622723 0.791275
613 10.321748 28.594395 39.625011 0.752189
614 10.213476 30.117050 39.224636 0.757631
615 10.147255 31.239347 41.116348 0.783254
616 10.225457 32.293961 42.130096 0.767570
617 10.237810 32.022163 42.237946 0.788319
618 10.241763 31.714756 45.902386 0.777540
619 10.211644 31.169041 44.709095 0.785831
620 10.141590 31.159685 36.629150 0.769987
621 10.203721 31.170979 43.682644 0.779005
622 10.132215 30.309435 39.699505 0.758349
623 10.191387 30.477232 41.082172 0.761230
624 10.202635 31.717291 42.321247 0.782434
625 10.176472 30.269129 41.432739 0.750885
626 10.062234 30.373434 40.190861 0.745283
627 10.148728 30.880890 47.748814 0.758331
628 10.161660 30.149088 40.276867 0.766280
629 10.076932 32.251324 45.949512 0.809276
630 10.014497 30.223806 38.812763 0.753666
631 10.147480 31.401785 41.958405 0.783280
632 10.089665 31.324041 41.294807 0.762392
633 10.146390 32.783264 44.675529 0.834137
634 10.010672 28.839329 39.032829 0.764788
635 10.090048 31.592875 40.087925 0.755136
636 10.167812 31.371788 40.773643 0.764319
637 10.071571 32.520931 43.621811 0.809180
638 10.084064 30.704103 46.330196 0.764378
639 10.082823 31.124193 41.827141 0.789817
640 10.115430 31.676672 40.732712 0.782872
641 10.041951 32.470097 41.621101 0.796224
642 10.047478 30.169109 41.879143 0.768825
643 10.086026 31.368666 41.162083 0.784595
644 10.021622 32.116001 44.177227 0.813651
645 9.993053 30.397690 40.735558 0.783744
646 10.015490 30.631868 40.086662 0.757853
647 10.008081 31.987120 48.596672 0.803098
648 9.974685 31.984331 48.100101 0.816306
649 10.017381 31.248077 40.230179 0.766258
650 10.020640 32.000061 47.333588 0.814199
651 9.997214 29.723112 43.755695 0.795468
652 9.981441 31.737379 41.607422 0.756347
653 9.971068 31.775999 41.492264 0.762575
654 9.992212 30.865385 40.317120 0.790785
655 9.931530 31.564976 41.215267 0.772238
656 9.935065 31.853416 41.622173 0.782915
657 10.056235 32.223610 45.113853 0.816813
658 10.034753 31.116976 41.442284 0.765694
659 9.956408 31.713394 44.925644 0.821500
660 9.956842 31.979059 44.247322 0.834422
661 9.961246 31.715359 43.274761 0.787393
662 9.910225 30.676476 39.511555 0.760025
663 9.920900 30.016319 39.390263 0.773459
664 9.911504 31.230188 42.298832 0.793608
665 9.945103 31.678097 44.985657 0.797827
666 9.942798 31.713078 40.818367 0.762015
667 9.907918 31.293547 42.838490 0.810552
668 9.922390 31.780157 43.648235 0.806912
669 9.892386 30.905590 41.307827 0.750406
670 9.979078 31.842716 42.867973 0.791048
671 9.946197 31.588737 43.264408 0.777233
672 9.865866 31.432087 41.144989 0.775803
673 9.983168 31.914169 43.800617 0.805683
674 9.828781 30.372656 39.472126 0.762793
675 9.831721 32.561714 43.959061 0.804887
676 9.883856 30.674862 41.189682 0.789501
677 9.885988 30.876160 40.452320 0.779910
678 9.869435 32.730408 43.312080 0.777129
679 9.827736 30.116957 40.042072 0.755432
680 9.848602 31.300837 41.809254 0.790091
681 9.834074 31.698816 41.792267 0.784149
682 9.857887 30.991501 41.364262 0.769668
683 9.883680 31.140213 43.657055 0.789945
684 9.847812 30.932934 41.761513 0.770102
685 9.834020 31.624313 42.631992 0.786023
686 9.910093 31.940235 41.694534 0.772361
687 9.810919 30.049749 38.494488 0.741426
688 9.796085 29.700165 38.188263 0.750679
689 9.868774 30.717962 40.764320 0.776954
690 9.903551 33.229519 44.173901 0.802213
691 9.817249 31.294138 40.596779 0.782075
692 9.824275 29.425268 40.771614 0.779332
693 9.842527 29.503506 39.334763 0.769946
694 9.794269 29.239500 37.961208 0.754913
695 9.817785 30.945566 39.964619 0.772701
696 9.817707 29.854034 40.415501 0.780207
697 9.816250 32.428398 43.072540 0.795279
698 9.854343 31.537256 40.777443 0.770251
699 9.796930 31.127625 40.363930 0.769160
700 9.761352 31.748146 42.998409 0.794501
701 9.727106 30.759462 39.631405 0.781783
702 9.818300 31.566833 40.856277 0.764799
703 9.735809 30.461531 40.020725 0.769803
704 9.709221 32.073898 41.426407 0.774317
705 9.860830 30.718891 40.711575 0.768392
706 9.753155 31.812387 40.169922 0.774792
707 9.783849 31.443691 42.912380 0.802167
708 9.753920 29.241016 38.127773 0.752105
709 9.736170 31.600452 41.892467 0.771903
710 9.778872 31.106777 40.985779 0.762869
711 9.781320 32.161392 42.339863 0.758567
712 9.723782 31.131306 41.367077 0.770838
713 9.713279 29.560587 40.657448 0.785997
714 9.705586 29.352640 38.429882 0.743384
715 9.712332 30.916153 40.737099 0.764970
716 9.698907 31.785757 40.028885 0.784439
717 9.636447 31.517471 42.659718 0.802592
718 9.740340 30.049469 39.182392 0.754952
719 9.728582 30.617294 39.796364 0.769710
720 9.678654 30.737925 42.368881 0.803600
721 9.711122 30.299809 41.268520 0.793355
722 9.619991 31.085951 39.955555 0.782532
723 9.751316 29.779947 40.341827 0.783709
724 9.674048 31.290476 41.474079 0.778345
725 9.672349 30.179070 39.595337 0.771420
726 9.699500 29.463131 38.146900 0.762972
727 9.669084 30.620199 39.680897 0.758486
728 9.628733 29.497955 39.276901 0.781883
729 9.671335 29.602190 39.459969 0.771758
730 9.661795 30.792170 40.036633 0.762638
731 9.684377 30.465631 39.869690 0.766051
732 9.668206 31.793076 41.195175 0.770406
733 9.652674 30.564663 40.454071 0.756535
734 9.625160 32.018318 42.422970 0.780837
735 9.570590 30.961109 39.625145 0.772827
736 9.620033 30.734894 39.833469 0.774007
737 9.586766 30.208803 39.739986 0.768127
738 9.670497 30.356806 38.895210 0.774671
739 9.615580 31.292831 40.804581 0.753298
740 9.560591 30.176247 39.565033 0.767050
741 9.573107 30.809959 40.802887 0.775361
742 9.636915 29.830799 39.214188 0.756181
743 9.597157 30.645247 40.622963 0.765673
744 9.617984 30.461678 39.248043 0.771196
745 9.630928 30.437168 40.714092 0.771946
746 9.646561 30.845448 41.071667 0.788137
747 9.542443 30.773481 40.134399 0.769803
748 9.590741 30.436485 40.005524 0.761820
749 9.679118 29.119307 38.218044 0.758506
750 9.595251 30.149401 39.743889 0.785995
751 9.565324 29.042376 38.672707 0.766602
752 9.583814 31.691635 40.837067 0.788996
753 9.606961 30.748987 39.166336 0.774745
754 9.601628 31.929968 41.832760 0.789794
755 9.604128 29.943163 39.956245 0.778257
756 9.570592 31.073618 41.455475 0.784281
757 9.626746 32.435730 42.175480 0.786749
758 9.531698 31.319565 40.691662 0.772488
759 9.540717 30.583803 39.801903 0.769506
760 9.625671 30.024263 39.508583 0.778451
761 9.571132 30.511950 39.708309 0.766924
762 9.509952 30.981873 40.450661 0.775295
763 9.578967 30.622362 39.369583 0.770379
764 9.573689 30.510088 40.041912 0.762529
765 9.509113 30.627520 39.801033 0.782817
766 9.528758 30.228762 39.832619 0.777744
767 9.546545 31.797190 42.300098 0.764829
768 9.582674 31.294750 40.103764 0.772561
769 9.593339 30.542294 39.817646 0.742610
770 9.605639 30.074352 39.240555 0.767354
771 9.710602 30.982210 39.419342 0.773902
772 9.537987 31.435150 40.593403 0.786945
773 9.590886 31.206141 40.566963 0.767543
774 9.567395 31.749069 40.750977 0.773995
775 9.542539 29.619267 38.685436 0.763386
776 9.527358 30.614010 39.639404 0.766361
777 9.539520 31.429237 40.269295 0.768710
778 9.559960 30.711203 40.088882 0.775561
779 9.513242 30.790771 39.574284 0.782673
780 9.529019 30.343843 39.506577 0.774377
781 9.466898 30.756144 39.555008 0.775904
782 9.496929 29.230103 38.275623 0.754839
783 9.530871 30.259159 39.312073 0.762919
784 9.511191 31.637276 40.612881 0.772637
785 9.542443 31.045744 39.771599 0.775636
786 9.636745 29.079962 38.024403 0.754148
787 9.520823 29.941092 38.866543 0.766303
788 9.544065 31.280649 40.372971 0.768853
789 9.571733 31.422525 40.813103 0.764549
790 9.478342 30.363409 39.369511 0.768250
791 9.537759 29.589869 38.728600 0.770246
792 9.539391 30.926800 39.580605 0.772210
793 9.550218 31.530407 41.006973 0.771047
794 9.527091 30.411278 39.702164 0.764613
795 9.571325 31.526840 40.725555 0.774288
796 9.554912 30.172140 39.190933 0.775775
797 9.538812 31.068150 40.053707 0.787963
798 9.537267 30.900993 40.010624 0.773879
799 9.507723 30.391706 39.997898 0.767159
800 9.558806 32.454838 42.460445 0.792395


In [11]:
l.recorder.plot_losses()



In [6]:
l.save(f"r_speedup_{optimizer}_batch_norm_{batch_norm}_{loss_func}_nlayers_{len(layers_sizes)}_log_{log}")

In [7]:
!ls models


old_models
old_repr
r_speedup_Adam_batch_norm_True_MAPE_nlayers_5_log_False.pth
speedup_Adam_batch_norm_True_MAPE_nlayers_5_log_False2.pth
speedup_Adam_batch_norm_True_MAPE_nlayers_5_log_False.pth
speedup_Adam_batch_norm_True_MSE_nlayers_5_log_False.pth
speedup_Adam_batch_norm_True_MSE_nlayers_5_log_True.pth
tmp.pth

In [12]:
val_df = get_results_df(val_dl, l.model)
train_df = get_results_df(train_dl, l.model)

In [13]:
df = train_df

In [14]:
df[:][['prediction','target', 'abs_diff','APE']].describe()


Out[14]:
prediction target abs_diff APE
count 245283.000000 245283.000000 2.452830e+05 245283.000000
mean 1.102805 1.135724 2.135267e-01 22.577551
std 1.295271 1.405682 5.665563e-01 91.278419
min 0.010044 0.008491 2.048910e-07 0.000030
25% 0.280880 0.278690 5.817745e-03 1.646686
50% 0.855459 0.899071 3.095371e-02 5.807508
75% 1.050393 1.036481 1.352153e-01 17.479273
max 8.452207 16.089287 1.541526e+01 5824.463867

In [15]:
df = val_df

In [16]:
df[:][['prediction','target', 'abs_diff','APE']].describe()


Out[16]:
prediction target abs_diff APE
count 10000.000000 10000.000000 10000.000000 10000.000000
mean 1.176222 1.430897 0.442006 42.532043
std 1.231279 1.683147 0.734061 148.393097
min 0.014810 0.014795 0.000040 0.006628
25% 0.389919 0.395193 0.024651 4.690779
50% 0.961758 1.000000 0.134899 22.480320
75% 1.257520 1.621683 0.497272 48.398965
max 7.889497 10.872228 6.232839 5399.246094

In [35]:
df[:][['index','name','prediction','target', 'abs_diff','APE']].to_csv(path_or_buf='./eval_results.csv',sep=';')

In [36]:
df[(df.interchange==0) & (df.unroll == 0) & (df.tile == 0)][['index','name','prediction','target', 'abs_diff','APE']].to_csv(path_or_buf='./eval_results.csv',sep=';')
df[(df.interchange==0) & (df.unroll == 0) & (df.tile == 0)][['prediction','target', 'abs_diff','APE']].describe()


Out[36]:
prediction target abs_diff APE
count 2074.000000 2074.0 2074.000000 2074.000000
mean 0.998558 1.0 0.050076 5.007599
std 0.208153 0.0 0.202042 20.204212
min 0.603882 1.0 0.000066 0.006628
25% 0.979231 1.0 0.002551 0.255150
50% 0.995987 1.0 0.004715 0.471514
75% 0.997637 1.0 0.022805 2.280509
max 6.001675 1.0 5.001675 500.167511

In [19]:
df[(df.interchange==0) & (df.unroll == 0) & (df.tile == 1)][['prediction','target', 'abs_diff','APE']].describe()


Out[19]:
prediction target abs_diff APE
count 725.000000 725.000000 725.000000 725.000000
mean 1.462764 1.519225 0.393448 29.481096
std 1.346193 1.422773 0.573493 31.370106
min 0.145803 0.091200 0.000040 0.009375
25% 0.494025 0.508859 0.070696 8.597638
50% 0.991690 0.993141 0.191803 19.992519
75% 2.151304 2.207209 0.496262 41.369717
max 7.768654 9.358214 3.835224 295.724640

In [21]:
df[(df.interchange==0) & (df.unroll == 1) & (df.tile == 0)][['prediction','target', 'abs_diff','APE']].describe()


Out[21]:
prediction target abs_diff APE
count 281.000000 281.000000 281.000000 281.000000
mean 4.372236 6.044158 1.848176 66.339111
std 2.171317 3.221366 1.231329 163.969162
min 0.904279 0.105179 0.001005 0.060693
25% 1.006489 2.546717 1.032713 18.170967
50% 5.899143 7.389543 1.563098 31.399256
75% 5.972240 8.668690 2.789691 43.133614
max 6.070222 10.872228 4.899988 848.387634

In [22]:
df[(df.interchange==1) & (df.unroll == 0) & (df.tile == 0)][['prediction','target', 'abs_diff','APE']].describe()


Out[22]:
prediction target abs_diff APE
count 232.000000 232.000000 232.000000 232.000000
mean 0.913173 0.918692 0.347373 122.910507
std 1.018806 1.168210 0.588294 610.275146
min 0.084280 0.018092 0.001015 0.220132
25% 0.260828 0.265846 0.033345 7.204351
50% 0.456005 0.466655 0.101908 19.017271
75% 1.092822 0.956079 0.327444 41.838287
max 5.042413 8.069739 3.409136 5399.246094

In [23]:
df[(df.interchange==0) & (df.unroll == 1) & (df.tile == 1)][['prediction','target', 'abs_diff','APE']].describe()


Out[23]:
prediction target abs_diff APE
count 868.000000 868.000000 868.000000 868.000000
mean 1.589693 1.748770 0.590289 37.538128
std 1.585954 1.605983 0.793788 50.443039
min 0.168853 0.057130 0.000085 0.043231
25% 0.442154 0.695116 0.105190 12.070397
50% 1.012416 1.241629 0.302328 29.301636
75% 2.136123 2.229650 0.773482 44.885977
max 7.889497 10.137201 4.684408 414.385712

In [24]:
df[(df.interchange==1) & (df.unroll == 1) & (df.tile == 0)][['prediction','target', 'abs_diff','APE']].describe()


Out[24]:
prediction target abs_diff APE
count 1276.000000 1276.000000 1276.000000 1276.000000
mean 1.962418 2.878316 1.036611 72.382378
std 1.334146 2.108479 1.021500 274.414642
min 0.101093 0.042484 0.000331 0.041299
25% 0.819918 0.977715 0.154067 10.751699
50% 2.072164 2.629361 0.717993 40.390493
75% 2.634203 4.365878 1.818399 50.273042
max 4.919624 9.784180 5.172597 2245.031982

In [25]:
df[(df.interchange==1) & (df.unroll == 0) & (df.tile == 1)][['prediction','target', 'abs_diff','APE']].describe()


Out[25]:
prediction target abs_diff APE
count 1663.000000 1663.000000 1663.000000 1663.000000
mean 0.827254 0.937209 0.295498 32.696384
std 0.851419 1.023356 0.457449 32.905022
min 0.014810 0.014836 0.000083 0.030472
25% 0.217906 0.246893 0.038760 9.840522
50% 0.529727 0.624512 0.132425 24.348541
75% 1.120389 1.173670 0.354944 48.979925
max 4.983345 8.724252 5.141850 309.855896

In [26]:
df[(df.interchange==1) & (df.unroll == 1) & (df.tile == 1)][['prediction','target', 'abs_diff','APE']].describe()


Out[26]:
prediction target abs_diff APE
count 2881.000000 2881.000000 2881.000000 2881.000000
mean 0.670118 0.858291 0.383388 57.996346
std 0.757664 1.094979 0.572025 79.790131
min 0.016312 0.014795 0.000374 0.131162
25% 0.158396 0.183774 0.059443 19.831461
50% 0.420433 0.424563 0.154730 43.728092
75% 0.847958 1.033311 0.456153 58.873505
max 4.961184 9.207530 6.232839 1148.485840

In [27]:
df[(df.interchange + df.tile + df.unroll != 0)][['prediction','target', 'abs_diff','APE']].describe()


Out[27]:
prediction target abs_diff APE
count 7926.000000 7926.000000 7926.000000 7926.000000
mean 1.222709 1.543651 0.544563 52.351154
std 1.375149 1.874331 0.786424 164.959198
min 0.014810 0.014795 0.000040 0.009375
25% 0.304365 0.312547 0.065765 12.863225
50% 0.714742 0.830516 0.205677 34.351240
75% 1.788819 2.132191 0.660448 52.750795
max 7.889497 10.872228 6.232839 5399.246094

In [28]:
df1 = df[(df.interchange==0) & (df.unroll == 0) & (df.tile == 0)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==0) & (df.unroll == 0) & (df.tile == 1)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==0) & (df.unroll == 1) & (df.tile == 0)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==1) & (df.unroll == 0) & (df.tile == 0)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==0) & (df.unroll == 1) & (df.tile == 1)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==1) & (df.unroll == 1) & (df.tile == 0)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==1) & (df.unroll == 0) & (df.tile == 1)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==0) & (df.unroll == 1) & (df.tile == 1)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==1) & (df.unroll == 1) & (df.tile == 1)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange + df.tile + df.unroll != 0)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df2 = df
joint_plot(df2, f"Validation dataset, {loss_func} loss")


/data/scratch/henni-mohammed/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
  return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [ ]:


In [ ]: