In [38]:
from os import environ

environ['optimizer'] = 'Adam'
environ['num_workers']= '2'
environ['batch_size']= str(2048)
environ['n_epochs']= '1200'
environ['batch_norm']= 'True'
environ['loss_func']='MSE'
environ['layers'] = '800 700 600 350 200 180'
environ['dropouts'] = '0.11 '* 6
environ['lr'] = '1e-03'
environ['log'] = 'False'
environ['weight_decay'] = '0.011'
environ['cuda_device'] ='cuda:6'
environ['dataset'] = 'data/speedup_dataset2.pkl'

%run utils.ipynb

In [39]:
train_dl, val_dl, test_dl = train_dev_split(dataset, batch_size, num_workers, log=log)

db = fai.basic_data.DataBunch(train_dl, val_dl, test_dl, device=device)


function329_schedule_13
0
{'computations': {'computations_array': [{'comp_id': 1,
                                          'lhs_data_type': 'p_int32',
                                          'loop_iterators_ids': [2, 3],
                                          'operations_histogram': [[5, 3, 0, 0],
                                                                   [0, 0, 0, 0],
                                                                   [0, 0, 0, 0],
                                                                   [0, 0, 0, 0],
                                                                   [0, 0, 0, 0],
                                                                   [0, 0, 0, 0],
                                                                   [0,
                                                                    0,
                                                                    0,
                                                                    0]],
                                          'rhs_accesses': {'accesses': [{'access': [[1,
                                                                                     0,
                                                                                     0],
                                                                                    [0,
                                                                                     1,
                                                                                     1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     0],
                                                                                    [0,
                                                                                     1,
                                                                                     -1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     1],
                                                                                    [0,
                                                                                     1,
                                                                                     0]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     1],
                                                                                    [0,
                                                                                     1,
                                                                                     1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     1],
                                                                                    [0,
                                                                                     1,
                                                                                     -1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     -1],
                                                                                    [0,
                                                                                     1,
                                                                                     0]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     -1],
                                                                                    [0,
                                                                                     1,
                                                                                     1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     -1],
                                                                                    [0,
                                                                                     1,
                                                                                     -1]],
                                                                         'comp_id': 0},
                                                                        {'access': [[1,
                                                                                     0,
                                                                                     0],
                                                                                    [0,
                                                                                     1,
                                                                                     0]],
                                                                         'comp_id': 0}],
                                                           'n': 9}}],
                  'n': 1},
 'inputs': {'inputs_array': [{'data_type': 'p_int32',
                              'input_id': 0,
                              'loop_iterators_ids': [0, 1]}],
            'n': 1},
 'iterators': {'iterators_array': [{'it_id': 2,
                                    'lower_bound': 1,
                                    'upper_bound': 1048575},
                                   {'it_id': 3,
                                    'lower_bound': 1,
                                    'upper_bound': 63},
                                   {'it_id': 0,
                                    'lower_bound': 0,
                                    'upper_bound': 1048576},
                                   {'it_id': 1,
                                    'lower_bound': 0,
                                    'upper_bound': 64}],
               'n': 4},
 'loops': {'loops_array': [{'assignments': {'assignments_array': [], 'n': 0},
                            'loop_id': 0,
                            'loop_it': 2,
                            'parent': -1,
                            'position': 0},
                           {'assignments': {'assignments_array': [{'id': 1,
                                                                   'position': 0}],
                                            'n': 1},
                            'loop_id': 1,
                            'loop_it': 3,
                            'parent': 0,
                            'position': 0}],
           'n': 2},
 'seed': 329,
 'type': 2}
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
/data/scratch/henni-mohammed/speedup_model/src/data/loop_ast.py in tile(self, loop_id, factor)
    260         try:
--> 261             while loop.iterator.id != loop_id:
    262                 loop = loop.children[0]

AttributeError: 'Computation' object has no attribute 'iterator'

During handling of the above exception, another exception occurred:

NameError                                 Traceback (most recent call last)
<ipython-input-39-ccbb4c277821> in <module>
----> 1 train_dl, val_dl, test_dl = train_dev_split(dataset, batch_size, num_workers, log=log)
      2 
      3 db = fai.basic_data.DataBunch(train_dl, val_dl, test_dl, device=device)

<ipython-input-38-fa1393f8fd16> in train_dev_split(dataset, batch_size, num_workers, log, seed)
    108 
    109     test_size = validation_size = 10000
--> 110     ds = DatasetFromPkl(dataset, maxsize=None, log=log)
    111 
    112     indices = range(len(ds))

/data/scratch/henni-mohammed/speedup_model/src/data/dataset.py in __init__(self, filename, normalized, log, maxsize)
    102             program = self.programs[self.program_indexes[i]]
    103 
--> 104             self.X.append(program.add_schedule(self.schedules[i]).__array__())
    105 
    106 

/data/scratch/henni-mohammed/speedup_model/src/data/loop_ast.py in add_schedule(self, schedule)
    273     def add_schedule(self, schedule):
    274 
--> 275         return Loop_AST(self.name, self.dict_repr, schedule)
    276 
    277     def dtype_to_int(self, dtype):

/data/scratch/henni-mohammed/speedup_model/src/data/loop_ast.py in __init__(self, name, dict_repr, schedule)
    218 
    219         if self.schedule:
--> 220             self.apply_schedule()
    221 
    222 

/data/scratch/henni-mohammed/speedup_model/src/data/loop_ast.py in apply_schedule(self)
    232             if type_ == 'tiling' and binary_schedule[1] == 1:
    233                 for loop_id, factor in zip(params, factors):
--> 234                     self.tile(loop_id, factor)
    235 
    236             elif type_ == 'interchange' and binary_schedule[0] == 1:

/data/scratch/henni-mohammed/speedup_model/src/data/loop_ast.py in tile(self, loop_id, factor)
    269             from pprint import pprint
    270             pprint(self.dict_repr)
--> 271             exit(1)
    272 
    273     def add_schedule(self, schedule):

NameError: name 'exit' is not defined

In [34]:
input_size = train_dl.dataset.X.shape[1]
output_size = train_dl.dataset.Y.shape[1]


model = None 

if batch_norm:
    model = Model_BN(input_size, output_size, hidden_sizes=layers_sizes, drops=drops)
else:
    model = Model(input_size, output_size)

if loss_func == 'MSE':
    criterion = nn.MSELoss()
elif loss_func == 'MAPE':
    criterion = mape_criterion
elif loss_func == 'SMAPE':
    criterion = smape_criterion

l = fai.Learner(db, model, loss_func=criterion, metrics=[mape_criterion, rmse_criterion])

if optimizer == 'SGD':
    l.opt_func = optim.SGD

In [4]:
l = l.load(f"r_speedup_{optimizer}_batch_norm_{batch_norm}_{loss_func}_nlayers_{len(layers_sizes)}_log_{log}")

In [5]:
l.lr_find()
l.recorder.plot()


LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.

In [35]:
l.fit_one_cycle(int(environ['n_epochs']), float(environ['lr']))


Total time: 1:10:08

epoch train_loss valid_loss mape_criterion rmse_criterion
1 3.119877 4.159297 103.162346 2.038654
2 2.458937 3.360072 151.471848 1.832884
3 2.052949 2.909236 183.127594 1.704980
4 1.763731 2.477645 166.634384 1.572941
5 1.668764 2.382118 159.341629 1.542754
6 1.627714 2.324363 149.311172 1.524337
7 1.576635 2.319100 138.422226 1.521556
8 1.531117 2.168367 143.406693 1.472214
9 1.482670 2.128766 139.532303 1.457496
10 1.464806 2.069212 141.572311 1.438002
11 1.419815 1.908513 145.050201 1.380745
12 1.388305 1.892902 142.724518 1.375559
13 1.372419 1.945301 140.964157 1.394101
14 1.347962 1.836970 141.336197 1.354999
15 1.352326 1.889487 146.588943 1.374369
16 1.309006 1.726306 143.368561 1.313716
17 1.285257 1.807702 139.191101 1.343356
18 1.273544 1.670614 147.955048 1.291968
19 1.252550 1.799533 137.228226 1.341073
20 1.234485 1.657880 142.605225 1.287345
21 1.231580 1.725841 139.279434 1.313315
22 1.210994 1.812722 138.140488 1.346266
23 1.180092 1.626870 132.472198 1.274803
24 1.183105 1.816368 131.703018 1.346385
25 1.168462 1.933239 125.115196 1.389659
26 1.157859 1.678803 131.229202 1.294858
27 1.113932 1.617365 131.479263 1.271243
28 1.097278 1.659424 131.024597 1.288021
29 1.065781 1.623170 129.736969 1.273783
30 1.048911 1.515324 130.019119 1.229141
31 1.075112 1.613534 136.784012 1.269187
32 1.059132 1.761956 128.306671 1.327267
33 1.027710 1.829119 125.620651 1.351971
34 1.026860 1.664926 125.301064 1.290217
35 0.996929 1.740414 124.529526 1.318961
36 0.999108 1.623054 124.079247 1.272657
37 0.964611 1.539746 130.963364 1.240497
38 0.933684 1.429818 122.551216 1.195192
39 0.992827 1.536408 129.641159 1.239398
40 0.981773 1.465253 129.942169 1.209506
41 0.947084 1.402562 127.626076 1.183241
42 0.966133 1.578613 131.963486 1.256302
43 0.952330 1.420017 126.452904 1.190990
44 0.925124 1.693338 124.465675 1.301196
45 0.909009 1.589748 133.088425 1.260656
46 0.871879 1.480783 128.473282 1.216144
47 0.845078 1.808878 125.664925 1.344234
48 0.809716 1.810237 126.078712 1.345164
49 0.813880 1.909651 125.119987 1.381511
50 0.798009 2.087227 124.800697 1.443841
51 0.803258 2.310949 126.656754 1.519828
52 0.793663 1.842795 120.894127 1.356635
53 0.748131 1.998771 126.817635 1.412342
54 0.774604 2.190444 123.942825 1.479187
55 0.779247 1.846167 124.731285 1.358030
56 0.725704 2.059845 123.273560 1.434904
57 0.720434 1.765807 117.120659 1.328202
58 0.720329 2.041100 118.386749 1.427928
59 0.690613 2.042965 120.170677 1.428296
60 0.693025 1.801416 115.312874 1.342025
61 0.714972 1.930613 121.848785 1.388965
62 0.725971 2.227051 117.441597 1.490409
63 0.730101 2.441448 120.224472 1.561794
64 0.714172 1.906287 112.693214 1.379779
65 0.727435 1.441927 117.230087 1.200135
66 0.697677 1.783687 116.422325 1.335412
67 0.691600 2.100202 128.758087 1.448871
68 0.679232 1.931315 116.228691 1.389670
69 0.666700 1.783789 107.531914 1.334751
70 0.671331 1.691642 119.705940 1.300142
71 0.662158 1.939294 114.952324 1.390400
72 0.642722 1.552013 106.849060 1.245666
73 0.647633 1.749076 113.505035 1.322230
74 0.642517 1.775123 120.564323 1.332165
75 0.635705 2.019512 111.315186 1.420244
76 0.637294 1.873256 107.001228 1.368568
77 0.646236 2.115181 107.304977 1.453196
78 0.646668 1.841369 110.191704 1.356517
79 0.620576 1.753481 107.081078 1.323045
80 0.629455 1.880888 106.930351 1.370908
81 0.621386 1.682623 109.700737 1.295767
82 0.623757 2.241790 105.876648 1.496994
83 0.606325 1.865404 113.165451 1.363879
84 0.587264 1.744814 100.405342 1.320108
85 0.625200 1.658385 101.940125 1.287161
86 0.598585 1.828812 119.196465 1.351268
87 0.601319 1.849705 113.748047 1.359325
88 0.611904 1.893726 100.104897 1.375888
89 0.657705 2.001693 107.370010 1.413228
90 0.560772 1.701046 94.244247 1.303616
91 0.563263 1.903952 103.675331 1.379429
92 0.589511 1.639474 107.521523 1.279435
93 0.580688 1.727988 94.814896 1.314033
94 0.561698 1.555581 109.183334 1.246795
95 0.560054 1.541789 98.742035 1.241515
96 0.572685 1.560505 91.998337 1.248443
97 0.550977 1.392285 93.477066 1.179142
98 0.525389 1.276214 96.099472 1.128984
99 0.574497 1.651492 101.072899 1.284708
100 0.520334 1.454352 88.660294 1.205364
101 0.575967 1.275921 94.958481 1.129089
102 0.508792 1.583715 83.560585 1.258188
103 0.492444 1.565348 86.927773 1.250888
104 0.497619 1.439216 88.708839 1.199178
105 0.495516 1.527188 89.432739 1.235717
106 0.473811 1.354015 85.955040 1.162211
107 0.507704 1.518998 91.637001 1.232058
108 0.470779 1.143936 77.236237 1.069528
109 0.447169 1.508342 76.214355 1.227927
110 0.450888 1.303494 76.073448 1.141683
111 0.477067 1.572500 82.641113 1.253288
112 0.451103 1.294602 83.325600 1.137023
113 0.520759 1.368117 89.187782 1.169408
114 0.469473 1.216594 89.349060 1.102633
115 0.553151 1.224327 95.070930 1.106451
116 0.457413 1.175548 78.910126 1.083967
117 0.423293 1.265560 78.267319 1.124370
118 0.437232 1.092538 76.999428 1.044520
119 0.521231 1.223347 86.320915 1.105628
120 0.533385 1.082803 81.785019 1.040331
121 0.498349 0.901337 97.241203 0.949236
122 0.434286 0.986848 91.683472 0.993010
123 0.464103 1.172653 110.596703 1.082308
124 0.440203 0.981711 74.530876 0.990728
125 0.425814 1.198924 78.298599 1.093840
126 0.421047 1.244012 93.545448 1.115153
127 0.416230 1.070482 84.104942 1.034373
128 0.449729 1.112025 111.098602 1.052973
129 0.447012 0.943311 97.194847 0.971178
130 0.418009 0.845380 97.013260 0.919281
131 0.410404 1.010399 84.565224 1.005171
132 0.448645 1.264179 98.708351 1.123976
133 0.413908 0.869661 139.217270 0.932440
134 0.420460 0.947159 105.644623 0.973030
135 0.408223 0.796965 82.158836 0.891908
136 0.394473 0.835953 95.288734 0.913854
137 0.406611 0.849507 94.149872 0.921625
138 0.425264 0.900812 93.289253 0.948786
139 0.400023 0.892658 86.260635 0.944589
140 0.398121 1.028139 91.781929 1.013703
141 0.394824 1.025008 84.343185 1.012194
142 0.399651 0.814258 111.132004 0.902073
143 0.404619 0.890658 87.060867 0.943483
144 0.385045 0.922776 72.100136 0.960007
145 0.429932 0.772217 131.541168 0.878563
146 0.398133 0.819233 84.047897 0.904864
147 0.387536 0.797998 89.299164 0.893178
148 0.405493 0.903610 107.978584 0.949929
149 0.381627 0.816351 99.753426 0.903346
150 0.388079 0.809674 93.143234 0.899640
151 0.391044 0.750890 116.713875 0.865884
152 0.379460 0.770675 77.504097 0.877845
153 0.362160 0.758912 94.316231 0.870944
154 0.375987 0.881909 115.983864 0.939070
155 0.366753 0.805664 98.779236 0.897316
156 0.384802 0.858883 112.863853 0.926681
157 0.377612 0.750217 113.171425 0.866102
158 0.393419 0.806141 83.516937 0.897701
159 0.425923 0.911638 142.913895 0.954731
160 0.402775 0.782084 91.231117 0.884255
161 0.378353 0.792464 73.942009 0.889809
162 0.359988 0.795851 91.402512 0.891850
163 0.406938 0.766372 106.498253 0.874943
164 0.374237 0.759315 74.799362 0.871235
165 0.350853 0.826245 76.598259 0.908713
166 0.361082 0.791901 86.885361 0.889675
167 0.380390 0.906597 111.837212 0.951838
168 0.367490 0.868620 83.970474 0.931216
169 0.422229 0.772067 89.151100 0.878433
170 0.380213 0.835672 77.550385 0.913889
171 0.351024 0.798530 70.564293 0.893419
172 0.337052 0.747141 77.178871 0.863841
173 0.344512 0.839857 84.891747 0.915677
174 0.387699 0.886987 93.223549 0.941500
175 0.379767 0.744459 93.080574 0.862666
176 0.343896 0.781239 72.250282 0.883770
177 0.333400 0.828569 92.265587 0.909945
178 0.353926 0.749404 90.767807 0.865539
179 0.345051 0.765049 91.186295 0.874200
180 0.333451 0.861779 113.888496 0.928206
181 0.350210 0.866608 82.767464 0.930846
182 0.333832 0.788016 77.828529 0.887617
183 0.347594 0.914941 107.235359 0.956304
184 0.345171 0.902789 91.147713 0.950025
185 0.336815 0.891538 106.805000 0.943810
186 0.323646 0.799539 86.381248 0.894110
187 0.324713 0.788986 98.400391 0.888098
188 0.345565 0.826268 102.615425 0.908865
189 0.370211 0.895061 116.022087 0.945962
190 0.331044 0.755006 81.905067 0.868349
191 0.318781 0.758502 61.613487 0.870877
192 0.320465 0.897615 84.835007 0.947216
193 0.316189 0.834078 68.267654 0.912701
194 0.335941 0.764035 90.115723 0.873791
195 0.324193 0.797403 64.965546 0.892728
196 0.359742 1.134844 146.151077 1.065252
197 0.320930 0.860277 80.237473 0.926928
198 0.322555 0.889076 88.259239 0.941705
199 0.304224 0.952582 84.828072 0.975697
200 0.326293 0.780356 90.985100 0.883298
201 0.302418 0.837071 82.402313 0.914552
202 0.320392 0.867054 120.138603 0.930783
203 0.317615 0.929972 69.208946 0.963967
204 0.312235 0.872417 92.632652 0.933760
205 0.296249 0.784462 92.364319 0.885592
206 0.306158 0.816971 94.135246 0.903701
207 0.306155 0.742034 63.927864 0.860868
208 0.301421 0.821611 82.755539 0.906163
209 0.320481 1.103151 122.203796 1.050255
210 0.301008 0.823386 89.938034 0.907202
211 0.300694 1.203958 142.501266 1.097152
212 0.296282 1.029641 122.960411 1.014462
213 0.293435 0.865260 78.518204 0.929680
214 0.286251 0.796625 88.672325 0.892038
215 0.298416 0.942071 94.338516 0.970396
216 0.340669 1.397497 156.087982 1.181653
217 0.318688 1.030097 126.973503 1.014711
218 0.301689 0.853487 71.159897 0.923574
219 0.292013 0.926609 103.604103 0.962503
220 0.288925 0.912864 84.617928 0.954916
221 0.286298 0.847233 79.584534 0.920363
222 0.285012 0.861566 98.047508 0.927763
223 0.368519 2.136118 211.229599 1.460296
224 0.299659 0.811044 76.671349 0.900255
225 0.298598 0.767647 106.283722 0.875768
226 0.293022 0.679274 93.893509 0.823724
227 0.279351 0.816693 80.401688 0.903562
228 0.277205 0.967702 95.106056 0.983426
229 0.277234 1.175310 126.180374 1.082468
230 0.284127 0.784944 88.475197 0.885557
231 0.265250 0.728695 89.943253 0.853067
232 0.301971 0.826045 105.790802 0.908771
233 0.328195 1.273563 149.128143 1.128394
234 0.275396 0.829653 67.621216 0.910761
235 0.283674 0.736321 98.964249 0.857982
236 0.266616 0.737766 84.844200 0.858718
237 0.271107 0.927562 89.297714 0.962715
238 0.273359 0.812995 101.312759 0.901483
239 0.272141 0.886825 92.660278 0.941471
240 0.278152 0.932879 102.626686 0.965766
241 0.270659 0.796869 79.640648 0.892437
242 0.284191 0.773771 98.287148 0.879522
243 0.264793 0.793620 86.187035 0.890427
244 0.257210 0.718339 83.565300 0.847144
245 0.259785 0.764477 71.335388 0.874164
246 0.273157 0.806770 82.735222 0.897866
247 0.253710 0.720641 76.467751 0.848815
248 0.262025 0.954865 96.325684 0.976859
249 0.268407 0.884943 76.048065 0.940424
250 0.298947 0.916009 133.181168 0.956657
251 0.318131 0.913326 108.592072 0.955611
252 0.296110 1.260913 167.714600 1.122329
253 0.276979 0.620239 113.235184 0.787310
254 0.277610 0.660697 86.102692 0.812336
255 0.291700 1.265321 134.239273 1.124314
256 0.280236 0.653201 86.957199 0.807950
257 0.272288 0.763280 114.304062 0.873640
258 0.249816 0.660259 75.924301 0.812333
259 0.290930 1.174361 148.479538 1.083418
260 0.264436 0.746237 85.929703 0.863457
261 0.247780 0.741691 105.091949 0.860598
262 0.260235 0.693707 101.073166 0.832639
263 0.253443 0.763241 90.903900 0.873245
264 0.259091 0.807865 96.762428 0.898432
265 0.248276 0.838976 85.648918 0.915445
266 0.251074 0.751494 96.106934 0.866626
267 0.250623 0.757178 113.887909 0.869895
268 0.266792 0.725149 95.338615 0.851479
269 0.235772 0.632280 67.180054 0.795018
270 0.241555 0.645678 80.581436 0.803055
271 0.243842 0.855396 116.358177 0.924776
272 0.253437 0.780699 93.213730 0.883486
273 0.246309 0.756766 84.243500 0.869872
274 0.256385 0.706212 94.465553 0.840257
275 0.234727 0.919730 79.999413 0.958781
276 0.269743 0.869879 125.565125 0.932450
277 0.250610 0.812189 105.235085 0.900941
278 0.253645 0.802904 78.564682 0.895995
279 0.249776 0.771783 77.184891 0.878124
280 0.283183 1.627154 187.646851 1.275392
281 0.262117 0.773728 87.275063 0.879138
282 0.307278 1.444251 144.313629 1.201330
283 0.280550 0.867839 105.944984 0.930639
284 0.251906 0.644228 93.046761 0.802452
285 0.266842 1.499736 120.020950 1.224316
286 0.248090 0.703440 76.797653 0.837846
287 0.245094 0.727104 102.375877 0.852635
288 0.230488 0.736103 70.846344 0.857377
289 0.234458 0.716166 83.603340 0.845856
290 0.246291 0.764694 84.420151 0.874256
291 0.230799 0.669530 82.840904 0.818094
292 0.222857 0.655805 102.233360 0.809741
293 0.234974 0.802511 78.100540 0.895122
294 0.229592 0.634351 71.844833 0.796203
295 0.228255 0.634107 63.998569 0.795928
296 0.223907 0.688829 98.157127 0.829839
297 0.231711 0.575030 78.714806 0.757879
298 0.245472 0.881846 70.973351 0.939009
299 0.228500 0.788420 69.483078 0.887438
300 0.226099 0.652906 67.422112 0.807895
301 0.233976 0.731523 87.110451 0.854743
302 0.227537 0.796078 85.625008 0.892038
303 0.228869 0.699666 68.950256 0.836060
304 0.235716 0.868270 128.320648 0.931443
305 0.229153 0.899539 124.649498 0.948303
306 0.228675 0.833931 85.563377 0.911846
307 0.225483 0.905352 98.984665 0.951017
308 0.242498 0.697858 82.813477 0.835166
309 0.233908 0.846067 98.336853 0.919692
310 0.233159 0.784875 105.450439 0.885717
311 0.217862 0.628170 65.930382 0.792173
312 0.222727 0.678630 78.981316 0.823424
313 0.216725 0.808236 106.970474 0.898971
314 0.224687 0.745103 81.101463 0.862802
315 0.235847 0.768987 75.749054 0.876712
316 0.226577 15.622602 211.217300 3.929859
317 0.232373 0.683162 76.555077 0.826323
318 0.221976 0.774872 93.447609 0.880079
319 0.225281 1.011397 93.219055 1.005584
320 0.245275 0.826487 88.257790 0.908305
321 0.224615 1.007878 91.460358 1.003521
322 0.231811 0.900651 109.444824 0.948605
323 0.223130 0.847339 77.097298 0.920303
324 0.219096 0.949094 87.974739 0.974052
325 0.221336 0.762967 74.311172 0.872458
326 0.220856 0.861768 95.128334 0.928116
327 0.244272 0.911336 68.885872 0.952458
328 0.262224 1.250535 130.411423 1.117355
329 0.235260 0.770673 99.912712 0.877648
330 0.228126 0.956489 109.712799 0.977811
331 0.232188 1.319135 136.030334 1.147599
332 0.247319 0.645090 76.824562 0.802792
333 0.244676 1.998824 163.269867 1.413252
334 0.228852 0.816678 87.424797 0.903571
335 0.238165 0.777065 81.270363 0.881305
336 0.240483 0.933654 110.913475 0.965763
337 0.226187 0.873136 105.647102 0.933365
338 0.234225 0.896849 110.653839 0.946418
339 0.227547 0.902291 98.798752 0.949272
340 0.228916 0.831217 83.480820 0.911668
341 0.222605 1.130754 123.523712 1.063292
342 0.219920 0.834561 116.519211 0.913157
343 0.225831 0.666759 80.182159 0.816261
344 0.218172 0.681363 95.342041 0.825384
345 0.220457 0.657926 70.505379 0.810817
346 0.230048 1.177985 130.895172 1.084875
347 0.223617 0.684028 92.021797 0.826309
348 0.222605 0.694678 97.994644 0.833326
349 0.210572 0.690080 73.610909 0.830484
350 0.218730 0.689496 99.281265 0.830043
351 0.213774 0.691322 69.995178 0.830887
352 0.210645 0.683251 84.802574 0.825961
353 0.210441 0.764333 88.818672 0.874056
354 0.214490 0.941601 79.872185 0.969998
355 0.213130 0.639263 69.442726 0.799124
356 0.216927 0.983361 115.218529 0.990951
357 0.202668 0.647769 64.058327 0.804598
358 0.203280 1.040189 119.565422 1.019660
359 0.212284 0.660704 74.146828 0.812656
360 0.211444 0.928285 112.015274 0.963301
361 0.206098 0.683867 72.134850 0.826672
362 0.216711 0.783290 82.926521 0.884910
363 0.203371 0.606602 58.611320 0.778778
364 0.202435 0.791825 104.606224 0.889602
365 0.213709 0.615473 66.120506 0.784027
366 0.213674 0.758017 76.182594 0.870440
367 0.199344 0.675579 69.926003 0.821750
368 0.192811 0.841059 70.954391 0.916882
369 0.208975 1.145176 117.890213 1.069797
370 0.200861 0.719430 86.825233 0.847988
371 0.195095 0.667870 64.505699 0.817129
372 0.206399 0.775960 75.239235 0.880646
373 0.218792 1.019172 124.695427 1.009088
374 0.204049 0.806153 96.917732 0.897609
375 0.199696 0.756927 95.658836 0.869496
376 0.200408 0.768328 88.711365 0.876287
377 0.200879 0.828363 74.565559 0.910024
378 0.208887 0.844610 85.011841 0.918878
379 0.214161 1.626636 107.404961 1.274368
380 0.200820 0.768562 78.414589 0.876293
381 0.199092 0.668663 57.640812 0.817478
382 0.203397 0.949211 106.370773 0.974119
383 0.197458 0.797059 71.298500 0.892024
384 0.198394 0.730811 81.077950 0.854727
385 0.193977 0.734650 78.361176 0.856895
386 0.196510 0.828459 102.868523 0.909892
387 0.199615 0.838440 78.512962 0.914782
388 0.197338 0.837759 74.124123 0.915020
389 0.206669 0.671283 76.024216 0.819102
390 0.195138 0.791319 80.677017 0.889095
391 0.194463 0.701071 69.961319 0.837283
392 0.195832 0.782509 85.922096 0.884590
393 0.191890 0.960386 98.123322 0.979700
394 0.191554 0.725894 68.308273 0.851883
395 0.190876 0.778486 65.531944 0.881895
396 0.194399 0.671020 68.840775 0.818664
397 0.208835 0.982793 95.806450 0.991307
398 0.205751 0.705977 56.438782 0.840087
399 0.195821 0.784622 78.864128 0.885566
400 0.188593 0.694300 61.621632 0.833049
401 0.190864 0.765340 86.861610 0.874365
402 0.197583 0.705862 70.316513 0.839699
403 0.192719 0.680899 72.477875 0.825072
404 0.185092 1.104765 82.147903 1.050566
405 0.199031 0.878106 93.645966 0.936838
406 0.189043 0.816121 79.173332 0.902903
407 0.191951 0.802793 72.359047 0.895661
408 0.194524 0.816260 92.267502 0.903402
409 0.217667 1.394414 115.777298 1.180494
410 0.202061 1.276918 116.471886 1.129597
411 0.200025 0.803632 89.230888 0.896193
412 0.210458 1.386700 143.310989 1.177353
413 0.199641 1.200805 108.483002 1.095563
414 0.193242 0.682016 73.321884 0.825640
415 0.199728 1.624444 116.561096 1.274221
416 0.209415 0.902961 94.905296 0.949960
417 0.198016 0.954730 91.028816 0.976700
418 0.194569 1.275772 95.473236 1.128737
419 0.192882 0.842065 79.687355 0.916535
420 0.192463 1.276895 101.503540 1.129912
421 0.195352 0.857146 79.774940 0.925488
422 0.224396 1.492076 121.577148 1.221066
423 0.200649 0.977463 89.666359 0.988020
424 0.199738 1.514442 113.748985 1.230394
425 0.204107 1.118153 107.328751 1.057078
426 0.195197 0.740241 68.909721 0.859928
427 0.200876 1.407341 158.468643 1.186089
428 0.197815 1.395509 87.630188 1.180571
429 0.203609 0.785674 86.542999 0.885877
430 0.200887 1.272331 91.055969 1.127928
431 0.193998 0.963452 77.150963 0.980694
432 0.189163 0.969940 84.530708 0.984667
433 0.190898 1.807559 134.333206 1.342594
434 0.194543 1.338659 111.516174 1.156371
435 0.197728 0.953306 89.595848 0.976287
436 0.194299 1.428059 98.974152 1.194585
437 0.197614 1.083766 84.498512 1.040805
438 0.188209 1.430697 107.003036 1.195971
439 0.184805 0.867055 75.694725 0.930839
440 0.195644 1.163394 84.388885 1.078101
441 0.194371 1.686524 114.293236 1.297789
442 0.188787 1.573894 120.879585 1.253795
443 0.188109 1.107702 86.374893 1.052023
444 0.184588 1.470064 107.167923 1.212154
445 0.200230 1.630721 118.229691 1.276893
446 0.197946 1.040828 90.391953 1.019076
447 0.191403 1.458320 101.082573 1.207271
448 0.192630 1.130447 85.335304 1.062794
449 0.185521 0.998909 98.818504 0.999294
450 0.181756 0.915229 92.091148 0.956397
451 0.185808 0.909141 73.085854 0.952944
452 0.181819 0.714018 70.079498 0.844202
453 0.191848 1.529204 111.991264 1.235726
454 0.179765 0.729545 75.495102 0.853801
455 0.188978 1.748733 102.679642 1.321902
456 0.185963 1.268744 86.292648 1.125784
457 0.187214 1.352678 107.565971 1.161716
458 0.184912 1.347936 86.267044 1.160743
459 0.181287 1.348074 100.179665 1.160834
460 0.184653 1.312083 97.856133 1.144514
461 0.182777 1.199746 95.485046 1.094271
462 0.196325 2.440196 147.396469 1.561132
463 0.190025 1.292557 99.104477 1.135500
464 0.181765 1.608309 99.724480 1.267494
465 0.182783 1.230560 112.480904 1.109152
466 0.184785 1.616660 117.705177 1.270670
467 0.184853 0.897237 83.536575 0.947084
468 0.189486 1.945063 129.685318 1.394501
469 0.177805 1.565519 90.409340 1.251149
470 0.182446 1.238222 80.975838 1.112377
471 0.180425 1.063235 79.952621 1.030718
472 0.180596 0.968374 92.617935 0.983691
473 0.176510 1.846807 105.588074 1.358179
474 0.180593 1.381484 95.267525 1.175079
475 0.180575 2.565567 136.303482 1.600059
476 0.185613 1.132393 103.884956 1.063522
477 0.184088 0.989386 89.559685 0.994401
478 0.190501 1.138399 104.365723 1.066695
479 0.181047 1.452733 95.982689 1.204971
480 0.176096 0.854483 74.355247 0.924183
481 0.187097 1.156760 88.985497 1.075455
482 0.178684 0.930799 81.112732 0.964226
483 0.178025 1.279528 90.406868 1.131094
484 0.186391 1.364727 86.424973 1.167230
485 0.186354 0.983095 79.160904 0.991163
486 0.177544 1.009420 90.745972 1.003844
487 0.184889 1.814551 125.995125 1.346287
488 0.179484 0.764305 78.602089 0.873705
489 0.186055 1.748083 122.892578 1.321756
490 0.175396 1.074527 96.704437 1.036475
491 0.175129 0.938322 88.498825 0.968572
492 0.175310 1.354279 92.387299 1.162028
493 0.185549 1.054936 106.970879 1.026830
494 0.182745 1.450891 83.892860 1.204098
495 0.178963 1.367628 90.692406 1.169233
496 0.173149 1.356334 103.236328 1.164285
497 0.173450 1.060094 82.456886 1.029514
498 0.174219 1.459061 100.449722 1.207687
499 0.173704 1.157011 75.191353 1.074435
500 0.174038 1.495481 119.946777 1.222289
501 0.186892 1.546335 92.522652 1.242902
502 0.180408 0.992134 73.817253 0.995926
503 0.186944 1.204891 94.750137 1.097338
504 0.177899 0.879116 82.517441 0.937342
505 0.174321 1.393220 99.108917 1.180024
506 0.180834 3.222656 175.369171 1.794385
507 0.181181 0.709289 74.663620 0.841971
508 0.177436 0.728459 78.443382 0.853275
509 0.182386 1.698713 119.007912 1.302674
510 0.172020 0.982239 97.713974 0.990470
511 0.174497 1.064309 101.095932 1.031364
512 0.175292 1.445302 128.433716 1.201857
513 0.180888 1.423756 108.644096 1.192465
514 0.180158 1.343325 103.350304 1.158688
515 0.186335 1.338025 121.494598 1.156510
516 0.175300 0.819619 79.574135 0.905202
517 0.177099 1.356266 117.208115 1.163777
518 0.183087 0.958503 102.014236 0.978628
519 0.181763 0.772579 77.895515 0.878347
520 0.177078 1.123198 101.700752 1.059464
521 0.186109 1.422620 95.302391 1.192315
522 0.175709 1.085071 76.309303 1.041582
523 0.173821 1.046983 92.093567 1.022593
524 0.171753 1.341048 95.993599 1.157028
525 0.178343 0.963177 89.293823 0.981205
526 0.173930 1.298919 83.055031 1.138601
527 0.169903 1.398625 92.041092 1.182487
528 0.177049 1.458302 89.575829 1.207333
529 0.174228 0.827934 73.972015 0.909607
530 0.184908 1.851847 112.942062 1.360368
531 0.182411 1.187760 84.653076 1.089554
532 0.175818 1.081256 84.001236 1.039407
533 0.175517 1.181890 97.405594 1.086920
534 0.169081 0.891171 85.892960 0.943273
535 0.171386 0.863105 87.835976 0.928972
536 0.175707 1.639969 110.209938 1.279721
537 0.173615 0.985973 91.514740 0.992791
538 0.169196 0.692376 77.770988 0.831688
539 0.163958 1.248190 110.881721 1.117083
540 0.167067 1.100993 111.580688 1.049179
541 0.175126 1.381462 99.215752 1.174238
542 0.172896 1.115579 86.352173 1.055823
543 0.167458 0.853393 85.671524 0.923698
544 0.162702 0.788280 76.614578 0.887406
545 0.170040 1.239248 111.969002 1.113158
546 0.173360 0.881492 79.143166 0.938393
547 0.174084 1.245871 116.359512 1.116107
548 0.167671 0.804089 70.485222 0.896685
549 0.161612 0.945899 85.004272 0.971976
550 0.170401 1.189675 102.994141 1.090028
551 0.164247 0.787654 80.033043 0.887181
552 0.166723 1.239319 118.600227 1.113147
553 0.162995 0.980513 81.865952 0.989874
554 0.161717 1.015110 84.519547 1.007490
555 0.162557 0.645522 66.945801 0.803352
556 0.166643 0.777428 80.095894 0.881206
557 0.164953 0.828415 80.857529 0.909772
558 0.173488 0.760314 65.886589 0.871913
559 0.165651 0.928753 84.067307 0.963160
560 0.161421 0.871313 75.573616 0.932902
561 0.165039 1.097705 103.571365 1.047165
562 0.169008 0.957982 77.245499 0.978638
563 0.169006 0.910113 80.223503 0.953827
564 0.176940 1.085906 103.012650 1.041720
565 0.174813 1.568586 132.739014 1.251463
566 0.164756 0.920890 90.711456 0.959602
567 0.160809 0.762684 83.335403 0.872966
568 0.165084 1.107860 98.265869 1.052227
569 0.159698 0.876365 97.461403 0.936102
570 0.165219 0.849489 87.569984 0.921202
571 0.169177 0.902228 95.469139 0.948554
572 0.167667 0.888402 87.948723 0.941447
573 0.165650 0.675177 71.734947 0.821290
574 0.165729 1.149327 102.096809 1.071619
575 0.159606 0.886336 92.920746 0.941272
576 0.167019 0.928675 82.104568 0.963229
577 0.169842 0.851142 76.298653 0.922181
578 0.170249 1.209365 119.416328 1.099570
579 0.165767 0.881788 83.991089 0.938862
580 0.164429 0.884588 90.144722 0.940431
581 0.170302 0.820458 76.562866 0.905211
582 0.169314 1.344414 110.785896 1.158435
583 0.159306 0.615489 62.146336 0.784337
584 0.158697 0.694825 64.825104 0.833131
585 0.159020 0.736898 78.136421 0.858325
586 0.163488 0.663598 63.973255 0.814080
587 0.161267 0.637296 56.016014 0.797731
588 0.157175 0.771841 68.417297 0.878366
589 0.163511 0.813992 61.268864 0.902092
590 0.164548 0.875572 73.753685 0.935618
591 0.166559 1.298104 107.278816 1.137848
592 0.166731 0.818294 90.592865 0.904463
593 0.156793 0.663728 65.990860 0.814412
594 0.161818 0.919696 115.022324 0.958819
595 0.158982 0.826449 80.383240 0.908598
596 0.165855 1.781349 121.685402 1.334434
597 0.160638 0.625215 56.052483 0.790191
598 0.179631 1.284225 94.172989 1.132477
599 0.161516 1.021843 108.914314 1.010665
600 0.159607 0.989508 93.361916 0.994467
601 0.158173 0.909078 81.680870 0.953261
602 0.156304 1.417018 132.042892 1.189611
603 0.158901 1.104166 102.469040 1.050051
604 0.159611 1.159341 102.258743 1.076596
605 0.156230 0.890880 81.038513 0.943516
606 0.159361 1.151249 100.354088 1.072655
607 0.163436 0.858488 65.402428 0.926456
608 0.155602 0.800095 72.227028 0.893997
609 0.161896 0.802588 79.137459 0.895788
610 0.160477 0.927909 82.901131 0.962917
611 0.155754 0.880987 85.682076 0.938291
612 0.154068 0.889208 90.291481 0.942148
613 0.155726 0.928151 76.374710 0.962702
614 0.170776 1.111658 91.013016 1.053956
615 0.163195 0.949262 84.609047 0.974272
616 0.161378 1.235794 100.344872 1.110694
617 0.160325 0.670692 60.027176 0.818550
618 0.162426 0.968751 83.175400 0.983696
619 0.157808 0.693224 62.780613 0.832578
620 0.160107 1.035206 104.129547 1.016868
621 0.158575 0.868503 82.831894 0.931735
622 0.152495 1.209234 93.036079 1.099016
623 0.157412 1.276269 95.820847 1.129299
624 0.161852 0.598958 64.958000 0.773299
625 0.155155 0.752744 74.114578 0.867288
626 0.159236 0.718920 60.157246 0.847709
627 0.149817 0.690380 72.047791 0.830858
628 0.157312 0.939514 75.384186 0.969003
629 0.154122 0.693624 60.914936 0.832684
630 0.154418 0.778047 78.333038 0.882039
631 0.159416 0.784638 69.724823 0.885626
632 0.152666 0.865819 74.132729 0.929176
633 0.158930 1.517493 110.503998 1.231149
634 0.156463 1.001414 79.592262 1.000091
635 0.153745 0.757459 69.522987 0.869902
636 0.172636 1.394411 134.424530 1.180526
637 0.155642 1.083498 87.976082 1.040447
638 0.148952 0.772564 74.042213 0.877905
639 0.153621 0.724997 72.397278 0.850996
640 0.156874 0.857371 77.512489 0.925332
641 0.148590 0.831811 80.805290 0.911329
642 0.160310 1.129749 123.900185 1.062321
643 0.151881 0.875648 89.534515 0.935546
644 0.151984 0.762671 72.876434 0.873206
645 0.151030 0.749866 82.375885 0.864668
646 0.149223 0.686414 59.858189 0.828228
647 0.150938 0.709556 73.134125 0.841987
648 0.155738 0.826865 80.177406 0.908886
649 0.150255 0.748767 71.170937 0.864898
650 0.150702 0.890812 92.918098 0.943538
651 0.150025 0.891806 83.293816 0.943636
652 0.153230 0.919228 86.778717 0.958124
653 0.149904 0.790074 75.985062 0.888804
654 0.148300 0.975401 90.183228 0.987492
655 0.150710 0.892328 86.170319 0.944050
656 0.147735 1.062493 85.903252 1.030249
657 0.163327 1.079081 106.893814 1.038650
658 0.150316 0.849465 84.126328 0.921221
659 0.149487 0.789612 82.865158 0.888204
660 0.145025 0.803735 68.724777 0.896395
661 0.147066 0.824219 80.654984 0.907244
662 0.145528 0.850705 83.568024 0.921799
663 0.150325 0.844134 84.048813 0.918041
664 0.152695 0.753228 70.684982 0.867691
665 0.156302 0.945353 93.688828 0.971265
666 0.152846 1.016449 84.211159 1.007983
667 0.149545 0.829023 70.909149 0.910293
668 0.148552 0.790032 69.049629 0.888538
669 0.153924 0.869687 79.376213 0.932023
670 0.149585 0.813574 69.518509 0.900836
671 0.153031 0.942514 90.482330 0.970443
672 0.149872 0.787789 73.426529 0.887213
673 0.145407 0.830929 73.761185 0.911256
674 0.150055 0.875971 84.523293 0.935666
675 0.148884 1.132704 84.826317 1.063916
676 0.153802 0.704650 62.244461 0.838914
677 0.145866 0.857977 79.679253 0.925616
678 0.148143 0.844393 78.162659 0.918450
679 0.148465 1.039542 90.849503 1.019187
680 0.146271 0.732675 70.579155 0.855720
681 0.145160 0.949075 99.950027 0.973675
682 0.147077 0.831624 74.555153 0.911648
683 0.151375 0.643900 66.422646 0.802242
684 0.151483 0.796277 74.360428 0.891806
685 0.146627 0.698182 68.162216 0.835113
686 0.149764 0.716602 74.722153 0.846164
687 0.151648 0.683345 62.773636 0.826510
688 0.147346 0.829545 81.886635 0.910592
689 0.146854 0.741642 75.199654 0.860839
690 0.148829 0.827010 83.582703 0.909141
691 0.148929 0.759049 73.489609 0.870719
692 0.149247 0.858050 94.313614 0.926094
693 0.143388 0.829318 82.708641 0.910499
694 0.146423 0.712063 58.106533 0.843718
695 0.143257 0.792316 71.407303 0.889872
696 0.139467 0.765836 73.910751 0.874778
697 0.146959 0.900611 96.505646 0.948869
698 0.149362 0.987489 87.820984 0.993545
699 0.141060 0.757943 72.608871 0.870046
700 0.139828 0.821429 80.135277 0.905901
701 0.140958 0.784438 81.769402 0.885268
702 0.142905 0.741616 84.047684 0.860914
703 0.142083 0.730264 65.630562 0.854375
704 0.140067 1.159846 96.942413 1.076026
705 0.145036 0.658421 70.390045 0.811147
706 0.141408 0.762116 77.951202 0.872885
707 0.145069 0.763490 71.338936 0.872823
708 0.150596 0.797016 76.652786 0.892649
709 0.142663 0.652987 70.484062 0.807737
710 0.143505 0.959911 96.830772 0.979024
711 0.140927 0.913673 89.596581 0.955090
712 0.143370 0.953766 94.438210 0.976516
713 0.146322 0.698682 73.057991 0.834927
714 0.142214 0.853727 78.537308 0.923277
715 0.140925 0.849873 85.139145 0.921650
716 0.151273 0.933031 90.031853 0.965529
717 0.148344 0.921854 88.754997 0.960020
718 0.148993 0.964579 90.154663 0.981587
719 0.149809 1.098740 91.298653 1.047737
720 0.145542 0.979445 88.924911 0.988291
721 0.141002 0.700170 69.151314 0.836650
722 0.145131 0.867658 85.411247 0.931320
723 0.146706 0.770292 65.098785 0.877275
724 0.145645 0.694163 65.057816 0.832691
725 0.147690 0.766687 78.103035 0.875549
726 0.143415 0.795148 74.662567 0.891419
727 0.143554 0.846380 87.079872 0.918749
728 0.146870 0.894122 86.347122 0.944690
729 0.147715 0.788871 75.539009 0.887916
730 0.147313 0.930390 83.511955 0.964119
731 0.140192 0.868210 82.070747 0.931601
732 0.142652 0.862561 80.056557 0.928380
733 0.144782 0.859035 80.776138 0.926671
734 0.141168 0.738665 70.779442 0.859357
735 0.139451 0.668353 68.009804 0.817030
736 0.134980 0.966177 92.350700 0.982547
737 0.138741 0.830810 70.386642 0.911087
738 0.138229 0.753456 70.733963 0.867528
739 0.138013 0.833549 77.222694 0.912951
740 0.138158 0.732452 74.050972 0.855684
741 0.143803 0.673194 55.675224 0.820239
742 0.140522 0.788183 70.766106 0.887612
743 0.143405 0.691782 70.987053 0.831460
744 0.142258 0.895171 85.181229 0.945632
745 0.139458 0.717190 72.829903 0.846737
746 0.135828 0.772244 63.699245 0.878534
747 0.141145 0.736908 60.455173 0.857904
748 0.145057 0.909786 86.077454 0.953401
749 0.141895 0.730835 55.053806 0.854584
750 0.136927 0.842168 83.019073 0.917648
751 0.140459 0.912307 80.909286 0.954241
752 0.140977 0.838125 80.370262 0.915179
753 0.138222 0.855136 92.377686 0.924563
754 0.141385 0.938021 92.143814 0.968454
755 0.139170 0.637330 49.196426 0.798256
756 0.135967 1.070291 80.122086 1.033933
757 0.141540 0.629437 56.767380 0.792818
758 0.139181 0.610211 60.455395 0.780746
759 0.134261 0.626026 60.625820 0.791090
760 0.145350 0.966435 84.377327 0.982720
761 0.141219 0.782872 69.419189 0.884536
762 0.141002 0.722433 73.031761 0.849607
763 0.133006 0.720296 68.477715 0.848302
764 0.134138 0.786528 67.884903 0.886506
765 0.136377 0.805257 62.704475 0.896570
766 0.135813 0.679017 55.923164 0.823736
767 0.137290 0.874572 85.642273 0.934445
768 0.139021 0.722816 52.543537 0.849280
769 0.134938 0.721796 59.651924 0.849145
770 0.137956 0.672354 55.297367 0.819780
771 0.133038 0.672657 60.190861 0.820014
772 0.132928 0.707819 62.137955 0.840831
773 0.135470 0.760348 64.833504 0.871517
774 0.136777 0.782569 75.058495 0.884159
775 0.134267 0.595628 66.217697 0.771453
776 0.137450 0.810084 81.734398 0.900009
777 0.139154 0.834705 75.696297 0.913357
778 0.137214 0.803814 74.287003 0.896455
779 0.136605 0.855918 76.202576 0.925074
780 0.132328 0.793015 73.810226 0.889253
781 0.136068 0.725413 63.327805 0.851334
782 0.134998 0.735236 79.457085 0.857234
783 0.137037 0.815389 68.237335 0.902677
784 0.141699 0.735451 61.698601 0.857267
785 0.143027 0.883287 84.608551 0.939326
786 0.138913 0.715244 66.618179 0.845338
787 0.137357 0.743260 68.992958 0.862037
788 0.134902 0.782906 77.621887 0.884476
789 0.132085 0.755246 67.271080 0.868662
790 0.136043 0.690477 71.485229 0.830748
791 0.130810 0.642984 56.834675 0.801487
792 0.133258 0.780046 75.070984 0.882963
793 0.134483 0.739007 68.777054 0.859553
794 0.132461 0.727079 69.103584 0.852639
795 0.132995 0.781789 70.328239 0.884096
796 0.137530 0.697417 56.050949 0.834785
797 0.138565 0.918546 90.393265 0.958260
798 0.142959 0.803625 65.658516 0.896293
799 0.134219 0.827149 82.063705 0.908917
800 0.135272 0.807847 82.009331 0.898407
801 0.137839 0.759706 75.174141 0.870845
802 0.133868 0.681547 62.379974 0.825324
803 0.133795 0.824020 84.770927 0.907205
804 0.132306 0.829868 71.151321 0.910714
805 0.132891 0.739162 70.403473 0.859366
806 0.140140 0.804481 82.427689 0.896211
807 0.135848 0.812914 74.971100 0.901411
808 0.136145 0.770378 76.852348 0.877685
809 0.132427 0.986331 105.018288 0.992893
810 0.131354 0.812691 81.480278 0.901344
811 0.129834 0.832237 71.475166 0.911851
812 0.131838 0.783876 77.681763 0.884866
813 0.131571 0.753372 74.308540 0.867688
814 0.133947 0.711661 72.192642 0.843313
815 0.132863 0.809984 80.340225 0.899666
816 0.127983 0.832700 80.468849 0.912282
817 0.135596 0.817659 67.471581 0.903779
818 0.127992 0.800468 72.416512 0.894554
819 0.135223 0.799768 75.606560 0.894012
820 0.130051 0.788218 70.451294 0.886550
821 0.132455 0.859685 82.569725 0.925971
822 0.128277 0.930151 88.491119 0.964150
823 0.130052 0.738669 69.206551 0.858968
824 0.127728 0.685790 70.349274 0.827884
825 0.127141 0.973838 82.392159 0.986199
826 0.126370 0.671615 78.842697 0.819178
827 0.129487 0.712044 64.748306 0.843302
828 0.125942 0.681542 63.548492 0.824952
829 0.132295 0.710244 73.662628 0.842581
830 0.132181 0.685735 61.087967 0.827791
831 0.129376 0.732298 70.953171 0.855650
832 0.131665 0.655070 53.336552 0.809148
833 0.129135 0.767638 71.542015 0.875895
834 0.127851 0.738866 69.451195 0.859400
835 0.128787 0.763613 81.898903 0.873193
836 0.135071 0.874869 81.566391 0.935138
837 0.133684 0.827637 74.299240 0.908775
838 0.129206 0.769226 70.697342 0.876766
839 0.129678 0.641792 54.961533 0.800852
840 0.124755 0.679752 60.352402 0.824387
841 0.131354 0.754859 63.659889 0.868705
842 0.130730 0.803999 67.010056 0.895996
843 0.129934 0.765631 73.773239 0.874789
844 0.129745 0.726068 64.114990 0.851836
845 0.131370 0.693417 64.278412 0.832478
846 0.129534 0.791103 70.968597 0.889275
847 0.126288 0.817280 80.383675 0.903434
848 0.125069 0.855840 87.548981 0.924328
849 0.129508 0.802894 75.846062 0.895558
850 0.127506 0.806673 78.925148 0.897788
851 0.126308 0.770416 70.535324 0.877619
852 0.124011 0.785654 73.624588 0.886212
853 0.122685 0.860758 80.499603 0.927246
854 0.130077 0.934538 86.273361 0.965886
855 0.130061 0.787638 73.446999 0.887382
856 0.127646 0.792422 79.226295 0.889912
857 0.125300 0.699591 69.284447 0.835967
858 0.125912 0.820846 68.813934 0.905570
859 0.126598 0.686241 53.014824 0.827954
860 0.128294 0.848718 73.271309 0.921079
861 0.129246 0.760581 62.571987 0.871836
862 0.127758 0.797367 79.280708 0.892465
863 0.125410 0.840746 70.574196 0.916674
864 0.124489 0.779022 69.533325 0.882290
865 0.127927 0.784191 76.773239 0.885480
866 0.123134 0.729571 60.989555 0.853589
867 0.119733 0.769269 69.834816 0.876822
868 0.123930 0.803790 75.501091 0.896240
869 0.123547 0.719518 61.469032 0.848037
870 0.128810 0.721589 67.405113 0.849203
871 0.125005 0.697703 67.956528 0.835003
872 0.122462 0.813084 73.111679 0.901506
873 0.122447 0.740543 73.670097 0.860176
874 0.126857 0.749528 72.324921 0.865690
875 0.131695 0.722813 61.078850 0.849694
876 0.125880 0.662522 62.707043 0.813879
877 0.126684 0.751525 70.285187 0.866694
878 0.124539 0.704868 59.220436 0.838918
879 0.124954 0.828557 72.955673 0.909943
880 0.123608 0.787326 71.788651 0.887207
881 0.127098 0.748183 60.022919 0.864737
882 0.126865 0.851146 87.225677 0.921999
883 0.125689 0.824449 82.027603 0.907264
884 0.124584 0.760740 68.316032 0.871976
885 0.120108 0.774543 61.065792 0.879950
886 0.125730 0.932809 85.708900 0.965033
887 0.124557 0.814857 73.208153 0.902515
888 0.123117 0.705696 68.562347 0.839692
889 0.121852 0.721715 61.536713 0.849473
890 0.126098 0.742216 60.987450 0.860817
891 0.120653 1.062375 103.519363 1.030538
892 0.123961 0.790269 77.207947 0.888449
893 0.120068 0.719687 70.695168 0.847840
894 0.119714 0.791245 75.368866 0.889199
895 0.119573 0.818452 73.549835 0.904163
896 0.122320 0.808618 78.424637 0.899149
897 0.125887 0.824732 80.290741 0.907920
898 0.117799 0.836124 85.060043 0.913563
899 0.121143 0.758994 70.913597 0.870981
900 0.125233 0.873077 83.457085 0.934128
901 0.120287 0.849922 80.327820 0.921709
902 0.122525 0.783704 79.133583 0.884678
903 0.123662 0.756394 67.055534 0.869606
904 0.121717 0.865878 70.123909 0.930122
905 0.120713 0.793093 85.052780 0.889698
906 0.121080 0.889493 85.164940 0.942971
907 0.117612 0.844185 80.960449 0.918127
908 0.120263 0.838418 78.550041 0.915385
909 0.119573 0.782555 78.009926 0.884186
910 0.120953 0.863941 78.142128 0.928819
911 0.121647 0.796701 68.384628 0.892066
912 0.122894 0.756591 75.006775 0.869502
913 0.118885 0.750115 70.856598 0.865811
914 0.117796 0.668032 67.041161 0.817016
915 0.122959 0.727480 66.006737 0.852831
916 0.121519 0.816069 79.551155 0.903176
917 0.120895 0.802148 79.725113 0.895292
918 0.122331 0.731320 71.896248 0.854683
919 0.124202 0.765659 71.717850 0.874894
920 0.117634 0.789400 74.646309 0.888323
921 0.121598 0.823749 77.870102 0.907297
922 0.119266 0.689247 56.827957 0.829969
923 0.118664 0.691824 62.945202 0.831548
924 0.121882 0.861561 68.371605 0.928117
925 0.121415 0.776154 65.963669 0.880535
926 0.116793 0.672379 63.294083 0.819957
927 0.117897 0.714725 66.252090 0.845114
928 0.124026 0.665319 62.029869 0.815544
929 0.118336 0.771087 73.835213 0.877774
930 0.119793 0.622166 60.023930 0.788672
931 0.117317 0.773960 68.661530 0.879605
932 0.114125 0.695153 67.658638 0.833332
933 0.115104 0.664740 63.792461 0.814830
934 0.116095 0.651460 59.220108 0.806791
935 0.117770 0.726300 67.102173 0.852068
936 0.119095 0.751121 69.539070 0.866558
937 0.118085 0.841159 76.659012 0.916974
938 0.117928 0.780033 73.175438 0.882683
939 0.118104 0.685101 69.956955 0.827517
940 0.120478 0.771169 76.381409 0.877659
941 0.117634 0.717389 64.905418 0.846399
942 0.114946 0.748336 65.818687 0.864469
943 0.118481 0.811096 73.063972 0.900270
944 0.119836 0.693087 67.192596 0.832341
945 0.117801 0.709374 69.899551 0.841849
946 0.118832 0.657450 56.023426 0.810399
947 0.113406 0.735711 60.315777 0.857450
948 0.115026 0.741877 63.647175 0.860206
949 0.114263 0.667443 56.309727 0.816779
950 0.118397 0.632594 57.012901 0.795348
951 0.111560 0.719670 66.968857 0.847906
952 0.114859 0.669670 63.329250 0.818244
953 0.119110 0.671627 61.439075 0.819363
954 0.116624 0.675068 64.733635 0.821046
955 0.115915 0.764605 76.854065 0.874040
956 0.121648 0.687593 65.689209 0.829128
957 0.119421 0.697026 59.113720 0.834478
958 0.115595 0.706061 72.140297 0.840119
959 0.116709 0.685859 55.077888 0.827981
960 0.116936 0.703268 57.799576 0.838525
961 0.116535 0.711215 60.594662 0.842464
962 0.115108 0.724686 68.987823 0.850802
963 0.116769 0.661107 64.263542 0.812487
964 0.113600 0.703931 67.577583 0.838645
965 0.113771 0.661129 64.234398 0.812776
966 0.115027 0.697155 69.484673 0.834809
967 0.114927 0.779625 69.883339 0.882858
968 0.114793 0.673794 59.328445 0.820541
969 0.113556 0.696457 59.943825 0.834325
970 0.115090 0.705856 67.017387 0.840031
971 0.115081 0.703994 63.391975 0.838366
972 0.113798 0.673404 61.300282 0.820445
973 0.115016 0.703637 66.659164 0.838355
974 0.114694 0.614552 55.502102 0.783201
975 0.115214 0.701869 62.894051 0.837469
976 0.112756 0.657801 61.919682 0.810937
977 0.113553 0.689850 64.984772 0.830112
978 0.114204 0.715862 60.413063 0.845453
979 0.116184 0.730430 62.707680 0.853831
980 0.114757 0.703285 62.496994 0.838057
981 0.113578 0.663716 60.079155 0.814641
982 0.116264 0.668989 62.524399 0.817625
983 0.114423 0.663821 60.894039 0.814687
984 0.110721 0.747818 71.188477 0.864558
985 0.111381 0.807214 66.767303 0.898053
986 0.116541 0.664790 60.660988 0.815089
987 0.113688 0.686736 62.330536 0.828502
988 0.112749 0.665166 58.630375 0.815163
989 0.112212 0.689947 58.273819 0.830407
990 0.112025 0.719338 69.021492 0.847998
991 0.113327 0.651904 66.724060 0.807113
992 0.110513 0.674112 62.859386 0.820740
993 0.112400 0.727665 74.631126 0.852418
994 0.112986 0.664349 62.482075 0.814801
995 0.115632 0.718697 62.276108 0.847678
996 0.111128 0.719331 64.033096 0.847973
997 0.113917 0.721044 63.799362 0.848813
998 0.109593 0.696601 67.893372 0.834553
999 0.112950 0.680917 62.757217 0.824996
1000 0.111084 0.692478 60.775936 0.832038
1001 0.114513 0.695487 66.445297 0.833748
1002 0.113680 0.647071 55.280186 0.803783
1003 0.108269 0.716334 74.150452 0.846165
1004 0.110694 0.724959 66.443893 0.851275
1005 0.113870 0.728502 70.775101 0.853326
1006 0.108967 0.716323 64.946159 0.845700
1007 0.113673 0.661401 63.587795 0.813233
1008 0.113013 0.638693 61.157848 0.798917
1009 0.115533 0.626402 60.000439 0.790945
1010 0.112777 0.639446 58.681961 0.799542
1011 0.113420 0.745895 71.443947 0.863412
1012 0.115846 0.697263 66.612900 0.834739
1013 0.110823 0.670315 66.377922 0.818662
1014 0.109037 0.732495 66.937401 0.855548
1015 0.113066 0.669594 58.175838 0.818005
1016 0.113751 0.712269 61.924576 0.843643
1017 0.113364 0.716702 66.051178 0.846051
1018 0.110154 0.629613 53.948437 0.793282
1019 0.113974 0.621548 55.322048 0.788056
1020 0.110751 0.601124 52.246807 0.775088
1021 0.109951 0.688833 67.933411 0.829391
1022 0.110413 0.662017 60.156349 0.813275
1023 0.106534 0.595584 55.279549 0.771388
1024 0.110037 0.651853 54.517361 0.807061
1025 0.108328 0.648169 61.931644 0.804919
1026 0.109239 0.707837 67.050537 0.840987
1027 0.110592 0.696830 65.411705 0.834121
1028 0.109364 0.616449 57.367199 0.784916
1029 0.108515 0.650146 60.075970 0.806090
1030 0.108698 0.626738 56.584175 0.791389
1031 0.110545 0.661287 57.550724 0.812886
1032 0.109648 0.716472 67.748405 0.846017
1033 0.110666 0.721703 61.370411 0.849336
1034 0.108052 0.702248 66.118401 0.837387
1035 0.110191 0.675877 60.395775 0.822072
1036 0.110227 0.748638 70.651085 0.864934
1037 0.107478 0.702911 60.390820 0.838160
1038 0.107014 0.682117 64.727257 0.825628
1039 0.107988 0.690681 59.398838 0.830663
1040 0.109406 0.726103 68.107109 0.851721
1041 0.111461 0.713802 67.855278 0.843992
1042 0.110008 0.738403 68.018517 0.859139
1043 0.111682 0.695826 61.646255 0.833998
1044 0.110149 0.707236 63.210236 0.840090
1045 0.110188 0.673537 61.170101 0.820452
1046 0.106136 0.675906 60.163101 0.821846
1047 0.110024 0.675090 63.409237 0.821519
1048 0.111450 0.694755 69.518837 0.833205
1049 0.109484 0.693412 68.181328 0.832619
1050 0.105962 0.723172 71.092850 0.850108
1051 0.107035 0.717332 68.434723 0.846860
1052 0.106150 0.690129 62.086918 0.830390
1053 0.107229 0.700486 67.600021 0.836539
1054 0.106542 0.700408 66.504951 0.836715
1055 0.105653 0.699423 63.906570 0.836009
1056 0.109556 0.693279 65.200073 0.832308
1057 0.110989 0.643094 60.262108 0.801174
1058 0.107899 0.678355 61.911251 0.823404
1059 0.108437 0.657593 57.979900 0.810708
1060 0.111720 0.623135 57.255482 0.788568
1061 0.105845 0.673802 61.635654 0.820593
1062 0.105884 0.663994 59.094601 0.814784
1063 0.106755 0.631936 55.873631 0.794906
1064 0.109200 0.683541 59.107258 0.826329
1065 0.108799 0.697166 60.864975 0.834405
1066 0.108162 0.679611 58.756157 0.824043
1067 0.106922 0.693146 58.279892 0.831820
1068 0.108234 0.661890 58.878780 0.813535
1069 0.108920 0.647930 56.688477 0.804521
1070 0.109097 0.673447 62.437794 0.820384
1071 0.109302 0.659194 58.287655 0.811860
1072 0.109136 0.677154 62.214500 0.822631
1073 0.106175 0.687666 62.000080 0.828926
1074 0.108152 0.676504 61.541306 0.822206
1075 0.109337 0.693769 62.072330 0.832747
1076 0.104329 0.660901 59.947762 0.812639
1077 0.105230 0.732236 67.541862 0.855634
1078 0.105147 0.677211 61.423275 0.822420
1079 0.106023 0.673557 59.437977 0.820588
1080 0.104371 0.679835 60.936131 0.824433
1081 0.106817 0.643510 56.378914 0.801805
1082 0.105415 0.629687 57.273369 0.793436
1083 0.107084 0.687497 63.435608 0.828780
1084 0.107208 0.675498 62.246037 0.821577
1085 0.106632 0.704333 62.489525 0.838713
1086 0.103562 0.712755 63.820599 0.843980
1087 0.106870 0.718676 64.974655 0.847621
1088 0.105173 0.637784 56.179050 0.798471
1089 0.104018 0.689378 60.056961 0.829875
1090 0.107031 0.710522 62.294357 0.842544
1091 0.105412 0.687441 63.063351 0.828904
1092 0.105692 0.670642 61.048313 0.818848
1093 0.102850 0.640987 60.003826 0.800379
1094 0.107203 0.683166 63.222614 0.825690
1095 0.104189 0.695009 67.003403 0.833569
1096 0.103466 0.675452 65.622917 0.821270
1097 0.105225 0.724957 71.218498 0.851078
1098 0.105729 0.699567 65.197617 0.835857
1099 0.103115 0.663635 61.898689 0.814576
1100 0.102816 0.685389 62.144707 0.827651
1101 0.105137 0.669069 62.819530 0.817756
1102 0.105772 0.674110 63.492130 0.820673
1103 0.107906 0.658794 57.200062 0.810734
1104 0.105887 0.674157 60.639843 0.820823
1105 0.105918 0.658582 58.905724 0.811026
1106 0.105836 0.649627 58.043644 0.805798
1107 0.105568 0.714683 70.111183 0.845331
1108 0.105678 0.720048 68.355591 0.848493
1109 0.104799 0.673262 61.219707 0.820322
1110 0.104972 0.662744 62.762913 0.813806
1111 0.105133 0.690532 61.640652 0.830503
1112 0.103486 0.664740 63.140549 0.814835
1113 0.101623 0.684902 64.553047 0.827519
1114 0.103549 0.663503 59.322552 0.814103
1115 0.102538 0.682376 60.343124 0.825887
1116 0.104272 0.681480 60.307819 0.825448
1117 0.103168 0.644983 52.785774 0.802900
1118 0.104473 0.680538 61.959587 0.824433
1119 0.103827 0.683811 66.384262 0.826732
1120 0.105846 0.646476 58.515076 0.803625
1121 0.105947 0.659887 59.862263 0.812283
1122 0.104574 0.672116 60.500851 0.819222
1123 0.103727 0.690917 62.123569 0.830868
1124 0.105882 0.695593 60.763470 0.833798
1125 0.100477 0.685381 58.069469 0.827735
1126 0.100181 0.658140 57.167770 0.810719
1127 0.104611 0.674485 57.494442 0.821196
1128 0.103275 0.690486 61.308189 0.830830
1129 0.104447 0.679717 60.872749 0.824328
1130 0.105742 0.677272 58.419724 0.822878
1131 0.105764 0.672718 61.970825 0.820070
1132 0.106349 0.680749 60.648876 0.824813
1133 0.104641 0.658563 56.587170 0.811158
1134 0.103383 0.663976 54.905663 0.814585
1135 0.101461 0.670168 55.388039 0.818291
1136 0.102809 0.663206 60.060989 0.813903
1137 0.103380 0.663598 56.374207 0.814369
1138 0.101517 0.656552 57.405998 0.810118
1139 0.103785 0.683580 61.629467 0.826476
1140 0.104309 0.654732 56.688705 0.808792
1141 0.104922 0.667449 59.425304 0.816854
1142 0.102536 0.693071 67.670326 0.832449
1143 0.100758 0.646690 54.260036 0.803960
1144 0.105538 0.657214 57.449348 0.810258
1145 0.101753 0.665163 56.339130 0.815167
1146 0.103004 0.645178 56.246162 0.803142
1147 0.102237 0.668446 57.747051 0.817382
1148 0.102180 0.665866 59.391396 0.815635
1149 0.105951 0.654319 54.368999 0.808872
1150 0.103076 0.655487 57.211899 0.808585
1151 0.099158 0.682879 62.356533 0.826283
1152 0.101845 0.675864 59.867569 0.821959
1153 0.101236 0.672338 59.207954 0.819734
1154 0.104897 0.663111 54.334721 0.814174
1155 0.103444 0.655755 56.016613 0.809094
1156 0.102822 0.662476 56.886436 0.813638
1157 0.103356 0.663183 58.463024 0.814197
1158 0.102910 0.672716 58.736458 0.820122
1159 0.103234 0.679339 58.408337 0.823705
1160 0.103107 0.678410 60.128101 0.823387
1161 0.101940 0.668796 60.847252 0.817480
1162 0.103096 0.650176 55.445995 0.806185
1163 0.103919 0.639399 54.183998 0.799372
1164 0.104967 0.668196 57.115814 0.817269
1165 0.100913 0.661402 57.875488 0.812575
1166 0.100585 0.666914 56.899414 0.815597
1167 0.103432 0.642739 54.003281 0.801539
1168 0.100148 0.645571 53.682407 0.803263
1169 0.103059 0.655833 58.303867 0.809653
1170 0.105150 0.649880 55.440018 0.805197
1171 0.103878 0.680289 60.441952 0.824607
1172 0.100066 0.688987 62.761875 0.830011
1173 0.100683 0.643519 54.636375 0.801750
1174 0.103695 0.662101 56.798450 0.813337
1175 0.101431 0.654249 56.248837 0.808412
1176 0.100923 0.659488 56.069420 0.811805
1177 0.100472 0.668836 58.301693 0.817303
1178 0.104858 0.706710 64.259979 0.840536
1179 0.105970 0.665121 57.154869 0.815120
1180 0.103628 0.660857 57.652969 0.812251
1181 0.098558 0.648798 55.659714 0.805202
1182 0.100379 0.660021 56.983532 0.812224
1183 0.102600 0.662823 57.869301 0.813742
1184 0.100344 0.646766 54.533501 0.803965
1185 0.102849 0.646764 52.892136 0.803796
1186 0.103438 0.668249 58.565964 0.817379
1187 0.102145 0.668463 58.578476 0.817300
1188 0.103654 0.672041 58.621674 0.819339
1189 0.101864 0.643152 54.239857 0.801821
1190 0.101938 0.636780 51.671230 0.797895
1191 0.102562 0.666655 58.351452 0.816230
1192 0.103810 0.649241 55.872070 0.805692
1193 0.101447 0.653841 53.782349 0.808504
1194 0.101819 0.654426 55.459511 0.808151
1195 0.101880 0.662153 56.282032 0.813545
1196 0.099991 0.653965 55.536018 0.808547
1197 0.102185 0.632493 51.019947 0.794836
1198 0.103757 0.672557 58.831612 0.819726
1199 0.103230 0.644949 54.025200 0.802998
1200 0.101254 0.668392 58.039326 0.817496


In [31]:
l.recorder.plot_losses()



In [6]:
l.save(f"r_speedup_{optimizer}_batch_norm_{batch_norm}_{loss_func}_nlayers_{len(layers_sizes)}_log_{log}")

In [7]:
!ls models


old_models
old_repr
r_speedup_Adam_batch_norm_True_MAPE_nlayers_5_log_False.pth
speedup_Adam_batch_norm_True_MAPE_nlayers_5_log_False2.pth
speedup_Adam_batch_norm_True_MAPE_nlayers_5_log_False.pth
speedup_Adam_batch_norm_True_MSE_nlayers_5_log_False.pth
speedup_Adam_batch_norm_True_MSE_nlayers_5_log_True.pth
tmp.pth

In [12]:
val_df = get_results_df(val_dl, l.model)
train_df = get_results_df(train_dl, l.model)

In [13]:
df = train_df

In [14]:
df[:][['prediction','target', 'abs_diff','APE']].describe()


Out[14]:
prediction target abs_diff APE
count 245283.000000 245283.000000 2.452830e+05 245283.000000
mean 1.102805 1.135724 2.135267e-01 22.577551
std 1.295271 1.405682 5.665563e-01 91.278419
min 0.010044 0.008491 2.048910e-07 0.000030
25% 0.280880 0.278690 5.817745e-03 1.646686
50% 0.855459 0.899071 3.095371e-02 5.807508
75% 1.050393 1.036481 1.352153e-01 17.479273
max 8.452207 16.089287 1.541526e+01 5824.463867

In [15]:
df = val_df

In [16]:
df[:][['prediction','target', 'abs_diff','APE']].describe()


Out[16]:
prediction target abs_diff APE
count 10000.000000 10000.000000 10000.000000 10000.000000
mean 1.176222 1.430897 0.442006 42.532043
std 1.231279 1.683147 0.734061 148.393097
min 0.014810 0.014795 0.000040 0.006628
25% 0.389919 0.395193 0.024651 4.690779
50% 0.961758 1.000000 0.134899 22.480320
75% 1.257520 1.621683 0.497272 48.398965
max 7.889497 10.872228 6.232839 5399.246094

In [35]:
df[:][['index','name','prediction','target', 'abs_diff','APE']].to_csv(path_or_buf='./eval_results.csv',sep=';')

In [18]:
df[(df.interchange==0) & (df.unroll == 0) & (df.tile == 0)][['prediction','target', 'abs_diff','APE']].describe()


Out[18]:
prediction target abs_diff APE
count 2074.000000 2074.0 2074.000000 2074.000000
mean 0.998558 1.0 0.050076 5.007599
std 0.208153 0.0 0.202042 20.204212
min 0.603882 1.0 0.000066 0.006628
25% 0.979231 1.0 0.002551 0.255150
50% 0.995987 1.0 0.004715 0.471514
75% 0.997637 1.0 0.022805 2.280509
max 6.001675 1.0 5.001675 500.167511

In [19]:
df[(df.interchange==0) & (df.unroll == 0) & (df.tile == 1)][['prediction','target', 'abs_diff','APE']].describe()


Out[19]:
prediction target abs_diff APE
count 725.000000 725.000000 725.000000 725.000000
mean 1.462764 1.519225 0.393448 29.481096
std 1.346193 1.422773 0.573493 31.370106
min 0.145803 0.091200 0.000040 0.009375
25% 0.494025 0.508859 0.070696 8.597638
50% 0.991690 0.993141 0.191803 19.992519
75% 2.151304 2.207209 0.496262 41.369717
max 7.768654 9.358214 3.835224 295.724640

In [21]:
df[(df.interchange==0) & (df.unroll == 1) & (df.tile == 0)][['prediction','target', 'abs_diff','APE']].describe()


Out[21]:
prediction target abs_diff APE
count 281.000000 281.000000 281.000000 281.000000
mean 4.372236 6.044158 1.848176 66.339111
std 2.171317 3.221366 1.231329 163.969162
min 0.904279 0.105179 0.001005 0.060693
25% 1.006489 2.546717 1.032713 18.170967
50% 5.899143 7.389543 1.563098 31.399256
75% 5.972240 8.668690 2.789691 43.133614
max 6.070222 10.872228 4.899988 848.387634

In [22]:
df[(df.interchange==1) & (df.unroll == 0) & (df.tile == 0)][['prediction','target', 'abs_diff','APE']].describe()


Out[22]:
prediction target abs_diff APE
count 232.000000 232.000000 232.000000 232.000000
mean 0.913173 0.918692 0.347373 122.910507
std 1.018806 1.168210 0.588294 610.275146
min 0.084280 0.018092 0.001015 0.220132
25% 0.260828 0.265846 0.033345 7.204351
50% 0.456005 0.466655 0.101908 19.017271
75% 1.092822 0.956079 0.327444 41.838287
max 5.042413 8.069739 3.409136 5399.246094

In [23]:
df[(df.interchange==0) & (df.unroll == 1) & (df.tile == 1)][['prediction','target', 'abs_diff','APE']].describe()


Out[23]:
prediction target abs_diff APE
count 868.000000 868.000000 868.000000 868.000000
mean 1.589693 1.748770 0.590289 37.538128
std 1.585954 1.605983 0.793788 50.443039
min 0.168853 0.057130 0.000085 0.043231
25% 0.442154 0.695116 0.105190 12.070397
50% 1.012416 1.241629 0.302328 29.301636
75% 2.136123 2.229650 0.773482 44.885977
max 7.889497 10.137201 4.684408 414.385712

In [24]:
df[(df.interchange==1) & (df.unroll == 1) & (df.tile == 0)][['prediction','target', 'abs_diff','APE']].describe()


Out[24]:
prediction target abs_diff APE
count 1276.000000 1276.000000 1276.000000 1276.000000
mean 1.962418 2.878316 1.036611 72.382378
std 1.334146 2.108479 1.021500 274.414642
min 0.101093 0.042484 0.000331 0.041299
25% 0.819918 0.977715 0.154067 10.751699
50% 2.072164 2.629361 0.717993 40.390493
75% 2.634203 4.365878 1.818399 50.273042
max 4.919624 9.784180 5.172597 2245.031982

In [25]:
df[(df.interchange==1) & (df.unroll == 0) & (df.tile == 1)][['prediction','target', 'abs_diff','APE']].describe()


Out[25]:
prediction target abs_diff APE
count 1663.000000 1663.000000 1663.000000 1663.000000
mean 0.827254 0.937209 0.295498 32.696384
std 0.851419 1.023356 0.457449 32.905022
min 0.014810 0.014836 0.000083 0.030472
25% 0.217906 0.246893 0.038760 9.840522
50% 0.529727 0.624512 0.132425 24.348541
75% 1.120389 1.173670 0.354944 48.979925
max 4.983345 8.724252 5.141850 309.855896

In [26]:
df[(df.interchange==1) & (df.unroll == 1) & (df.tile == 1)][['prediction','target', 'abs_diff','APE']].describe()


Out[26]:
prediction target abs_diff APE
count 2881.000000 2881.000000 2881.000000 2881.000000
mean 0.670118 0.858291 0.383388 57.996346
std 0.757664 1.094979 0.572025 79.790131
min 0.016312 0.014795 0.000374 0.131162
25% 0.158396 0.183774 0.059443 19.831461
50% 0.420433 0.424563 0.154730 43.728092
75% 0.847958 1.033311 0.456153 58.873505
max 4.961184 9.207530 6.232839 1148.485840

In [27]:
df[(df.interchange + df.tile + df.unroll != 0)][['prediction','target', 'abs_diff','APE']].describe()


Out[27]:
prediction target abs_diff APE
count 7926.000000 7926.000000 7926.000000 7926.000000
mean 1.222709 1.543651 0.544563 52.351154
std 1.375149 1.874331 0.786424 164.959198
min 0.014810 0.014795 0.000040 0.009375
25% 0.304365 0.312547 0.065765 12.863225
50% 0.714742 0.830516 0.205677 34.351240
75% 1.788819 2.132191 0.660448 52.750795
max 7.889497 10.872228 6.232839 5399.246094

In [28]:
df1 = df[(df.interchange==0) & (df.unroll == 0) & (df.tile == 0)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==0) & (df.unroll == 0) & (df.tile == 1)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==0) & (df.unroll == 1) & (df.tile == 0)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==1) & (df.unroll == 0) & (df.tile == 0)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==0) & (df.unroll == 1) & (df.tile == 1)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==1) & (df.unroll == 1) & (df.tile == 0)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==1) & (df.unroll == 0) & (df.tile == 1)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==0) & (df.unroll == 1) & (df.tile == 1)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange==1) & (df.unroll == 1) & (df.tile == 1)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df1 = df[(df.interchange + df.tile + df.unroll != 0)]
joint_plot(df1, f"Validation dataset, {loss_func} loss")
df2 = df
joint_plot(df2, f"Validation dataset, {loss_func} loss")


/data/scratch/henni-mohammed/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
  return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [ ]:


In [ ]: