In [1]:
from os import environ
environ['optimizer'] = 'Adam'
environ['num_workers']= '2'
environ['maxsize']= '100000'
environ['batch_size']= str(2048)
environ['n_epochs']= '500'
environ['batch_norm']= 'True'
environ['loss_func']='MSE'
environ['layers'] = '300 200 120 100 80 50 30'
environ['dropouts'] = '0.3 0.2 0.2 0.1 0.1 0.05 0.05'
%run utils.ipynb
In [2]:
l = l.load(f"speedup_{optimizer}_batch_norm_{batch_norm}_{loss_func}_nlayers_{len(layers_sizes)}")
In [16]:
l.lr_find()
LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.
In [17]:
l.recorder.plot()
In [6]:
lr = 1e-03
In [7]:
l.model.train()
l.fit_one_cycle(1200, lr)
Total time: 35:58
epoch
train_loss
valid_loss
1
7.687636
7.262714
2
7.451930
6.694014
3
7.156573
6.316271
4
6.806825
5.809437
5
6.426156
5.318619
6
6.071734
4.873712
7
5.768003
4.561196
8
5.483164
4.375550
9
5.233691
4.198541
10
5.030746
4.066806
11
4.848773
3.973239
12
4.680661
3.901602
13
4.510105
3.816585
14
4.377848
3.727971
15
4.237719
3.638067
16
4.122325
3.563520
17
4.010893
3.484312
18
3.900244
3.407115
19
3.807636
3.347195
20
3.708703
3.294798
21
3.629704
3.257220
22
3.556972
3.198413
23
3.485856
3.148299
24
3.429863
3.104921
25
3.363362
3.065567
26
3.293475
3.037652
27
3.250177
2.987149
28
3.209872
2.948817
29
3.172403
2.899750
30
3.134380
2.884782
31
3.105505
2.869828
32
3.079831
2.855307
33
3.046091
2.838075
34
3.028842
2.835814
35
3.010430
2.819385
36
2.996575
2.809404
37
2.977798
2.798471
38
2.963527
2.794267
39
2.954505
2.788908
40
2.941222
2.780373
41
2.942931
2.779158
42
2.927840
2.772076
43
2.926000
2.768316
44
2.923443
2.766380
45
2.908234
2.759066
46
2.902673
2.757668
47
2.896184
2.755498
48
2.896798
2.748020
49
2.889181
2.745394
50
2.886995
2.744036
51
2.877647
2.739686
52
2.869596
2.736843
53
2.870392
2.739562
54
2.860522
2.731591
55
2.857225
2.729025
56
2.853484
2.724038
57
2.852811
2.726738
58
2.838186
2.720959
59
2.833876
2.719821
60
2.831818
2.716347
61
2.832571
2.713283
62
2.823960
2.709878
63
2.817336
2.706232
64
2.818372
2.705306
65
2.823453
2.705706
66
2.807070
2.699405
67
2.805151
2.691805
68
2.803892
2.695905
69
2.798194
2.693226
70
2.788768
2.682095
71
2.790319
2.678777
72
2.786037
2.678136
73
2.778776
2.672131
74
2.770477
2.666547
75
2.763159
2.657873
76
2.764297
2.664070
77
2.751325
2.638057
78
2.744201
2.631058
79
2.732606
2.619754
80
2.721688
2.617212
81
2.721602
2.617506
82
2.711296
2.605038
83
2.696837
2.566859
84
2.681238
2.558693
85
2.674694
2.559739
86
2.652852
2.509797
87
2.640350
2.486837
88
2.627136
2.466221
89
2.604764
2.433694
90
2.570650
2.423500
91
2.565939
2.477524
92
2.568869
2.430070
93
2.557443
2.411694
94
2.536312
2.387728
95
2.528251
2.356293
96
2.486777
2.278362
97
2.476256
2.318664
98
2.466734
2.313778
99
2.478853
2.374736
100
2.471170
2.468347
101
2.431479
2.257165
102
2.421715
2.361681
103
2.364113
2.165152
104
2.334555
2.153395
105
2.330214
2.159075
106
2.356394
2.417728
107
2.406351
2.340045
108
2.427342
2.373934
109
2.417528
2.271531
110
2.376957
2.335710
111
2.365792
2.283537
112
2.319077
2.183509
113
2.298161
2.239193
114
2.302883
2.175597
115
2.299219
2.141608
116
2.256837
2.109677
117
2.235227
2.133360
118
2.234063
2.125576
119
2.228143
2.011847
120
2.216273
2.055346
121
2.195322
2.050141
122
2.186842
2.051339
123
2.194551
2.167516
124
2.199944
2.026726
125
2.194858
2.071536
126
2.165499
1.993077
127
2.143531
1.988176
128
2.139872
2.007437
129
2.129594
2.002415
130
2.108221
1.971163
131
2.104826
1.943191
132
2.100977
1.936173
133
2.114564
2.062304
134
2.128689
2.042735
135
2.114635
2.043555
136
2.120571
2.015034
137
2.086385
1.996065
138
2.108817
2.101820
139
2.100845
2.087330
140
2.087185
1.910260
141
2.090288
1.928314
142
2.100903
2.021706
143
2.079773
1.963909
144
2.043046
1.926819
145
2.019472
1.868000
146
2.022185
1.872176
147
2.010034
1.923229
148
2.010324
1.899476
149
2.000669
1.901257
150
2.003775
1.913046
151
2.012396
1.961903
152
2.011962
1.846221
153
1.986400
1.829696
154
1.952764
1.840417
155
1.982459
1.902177
156
1.976262
1.876065
157
1.941381
1.810482
158
1.950448
1.816371
159
1.942734
1.779385
160
1.929382
1.855858
161
1.943235
1.769419
162
1.921285
1.809178
163
1.967946
1.877483
164
1.969178
1.879354
165
1.986397
1.959204
166
1.977664
1.864142
167
1.944477
1.847171
168
1.938013
1.870533
169
1.962082
1.796819
170
1.926559
1.808574
171
1.897469
1.679331
172
1.896666
1.751001
173
1.885233
1.713946
174
1.921221
1.804636
175
1.926187
1.716971
176
1.872689
1.701241
177
1.882256
1.802113
178
1.910993
1.721045
179
1.898885
1.674441
180
1.909627
1.664302
181
1.928765
1.735886
182
1.893055
1.651828
183
1.861433
1.683509
184
1.870579
1.726977
185
1.900425
1.742224
186
1.898451
1.699255
187
1.814395
1.474984
188
1.807477
1.609078
189
1.813969
1.591669
190
1.762320
1.528291
191
1.757051
1.666139
192
1.772490
1.598656
193
1.754760
1.606993
194
1.749919
1.527973
195
1.696240
1.436895
196
1.687186
1.423706
197
1.664844
1.399541
198
1.666087
1.354710
199
1.657110
1.354274
200
1.671994
1.427733
201
1.714852
1.409923
202
1.692029
1.425024
203
1.642500
1.324322
204
1.669379
1.513848
205
1.672995
1.574021
206
1.744171
1.500810
207
1.703692
1.314309
208
1.668196
1.408452
209
1.645641
1.441208
210
1.635106
1.550273
211
1.692595
1.565396
212
1.682055
1.349092
213
1.716429
1.769394
214
1.704354
1.505274
215
1.655665
1.434326
216
1.641263
1.429193
217
1.670771
1.469430
218
1.680309
1.379365
219
1.645450
1.439926
220
1.670585
1.350884
221
1.646855
1.415215
222
1.608185
1.310859
223
1.567431
1.339038
224
1.574433
1.341110
225
1.574124
1.414705
226
1.584300
1.323174
227
1.576384
1.343181
228
1.537284
1.492780
229
1.544458
1.349012
230
1.580765
1.342219
231
1.605426
1.391512
232
1.554311
1.310612
233
1.560986
1.389789
234
1.536770
1.241672
235
1.538533
1.403228
236
1.509825
1.288234
237
1.496426
1.391037
238
1.519611
1.385832
239
1.514813
1.266532
240
1.511241
1.269623
241
1.505465
1.311502
242
1.522658
1.262753
243
1.552134
1.254838
244
1.571713
1.307574
245
1.546659
1.279808
246
1.526115
1.428683
247
1.503784
1.373671
248
1.577746
1.391886
249
1.492543
1.184129
250
1.511609
1.370615
251
1.480059
1.231956
252
1.486851
1.331422
253
1.544954
1.402953
254
1.535049
1.594412
255
1.475018
1.278372
256
1.466306
1.251974
257
1.459922
1.291559
258
1.425106
1.247891
259
1.529634
1.321317
260
1.604520
1.307407
261
1.577063
1.223080
262
1.565775
1.514914
263
1.525922
1.288117
264
1.568312
1.406310
265
1.553991
1.498152
266
1.522281
1.322648
267
1.509660
1.294899
268
1.468125
1.205729
269
1.472857
1.239138
270
1.479173
1.312991
271
1.479685
1.311270
272
1.511883
1.333215
273
1.503515
1.569810
274
1.503342
1.330188
275
1.550533
1.228966
276
1.518641
1.260543
277
1.505810
1.310040
278
1.522352
1.289343
279
1.509003
1.227824
280
1.461388
1.218484
281
1.457991
1.372586
282
1.418439
1.213857
283
1.427286
1.388651
284
1.474070
1.267861
285
1.490312
1.285683
286
1.515924
1.261136
287
1.448944
1.324405
288
1.448211
1.178972
289
1.415652
1.286132
290
1.431581
1.197452
291
1.424609
1.199155
292
1.406331
1.165970
293
1.403997
1.220566
294
1.423056
1.242592
295
1.479193
1.179670
296
1.448774
1.186624
297
1.439209
1.266333
298
1.448489
1.198379
299
1.475476
1.287393
300
1.430236
1.289834
301
1.533670
1.448717
302
1.567616
1.273753
303
1.525136
1.331053
304
1.525541
1.207538
305
1.483082
1.170808
306
1.437217
1.173309
307
1.452133
1.232461
308
1.441007
1.237028
309
1.393180
1.112521
310
1.406272
1.322553
311
1.594723
1.899775
312
1.592133
1.202965
313
1.509433
1.403285
314
1.457962
1.234490
315
1.440631
1.217285
316
1.437614
1.323031
317
1.405057
1.145345
318
1.372293
1.157403
319
1.378514
1.154030
320
1.357262
1.186260
321
1.441193
1.301377
322
1.438475
1.150249
323
1.437533
1.277493
324
1.414469
1.203916
325
1.404207
1.284051
326
1.507114
1.340771
327
1.429821
1.180397
328
1.391912
1.180768
329
1.373646
1.158414
330
1.437346
1.241047
331
1.416624
1.165531
332
1.435262
1.160823
333
1.389219
1.111480
334
1.378616
1.540572
335
1.427897
1.209962
336
1.399007
1.107133
337
1.356192
1.208881
338
1.323985
1.105019
339
1.273370
1.033477
340
1.345571
1.583743
341
1.489517
1.256987
342
1.490638
1.158487
343
1.438501
1.140952
344
1.350099
1.121260
345
1.344151
1.080437
346
1.297164
1.104843
347
1.326015
1.097249
348
1.336264
1.247298
349
1.305643
1.059558
350
1.318936
1.253201
351
1.484727
1.231298
352
1.457434
1.179363
353
1.412177
1.153786
354
1.417429
1.198135
355
1.374230
1.150802
356
1.313715
1.007612
357
1.399905
1.152680
358
1.369432
1.121091
359
1.318050
0.991689
360
1.326920
1.223298
361
1.339942
1.062092
362
1.280453
1.092749
363
1.255623
1.004275
364
1.278724
1.097744
365
1.339018
1.192162
366
1.318219
1.066149
367
1.347278
1.065925
368
1.327348
1.083900
369
1.277555
0.987973
370
1.294618
1.086606
371
1.449940
1.578766
372
1.446816
1.119833
373
1.326209
1.093989
374
1.245735
1.148899
375
1.281950
1.133345
376
1.260638
0.958341
377
1.305219
1.283675
378
1.402644
1.156844
379
1.347259
0.994216
380
1.292364
1.116875
381
1.300196
1.089792
382
1.291584
1.085969
383
1.300244
1.083300
384
1.283400
1.073242
385
1.254812
1.000668
386
1.194707
1.002447
387
1.169868
0.941466
388
1.171017
1.018546
389
1.182929
1.155962
390
1.371053
1.336364
391
1.366498
1.119925
392
1.287609
1.009334
393
1.240982
1.054678
394
1.263370
1.088031
395
1.271307
1.192239
396
1.365531
1.274244
397
1.293635
0.992342
398
1.233432
0.993435
399
1.207249
1.005765
400
1.211244
1.123492
401
1.245718
1.067261
402
1.223635
1.020771
403
1.234048
0.994056
404
1.207954
0.988176
405
1.173981
0.961904
406
1.153203
1.114505
407
1.135616
0.928849
408
1.170343
1.063383
409
1.182024
0.969348
410
1.200382
1.082610
411
1.218884
0.994954
412
1.207154
0.976871
413
1.167612
0.968310
414
1.151502
0.930998
415
1.148058
1.053439
416
1.158095
1.138766
417
1.208512
1.040123
418
1.195727
1.175355
419
1.155733
0.931189
420
1.130502
0.995862
421
1.132902
1.116351
422
1.114006
0.896332
423
1.112156
0.994079
424
1.119722
1.085283
425
1.114626
1.115006
426
1.079145
1.160540
427
1.111229
0.974964
428
1.105230
0.961592
429
1.147517
1.201082
430
1.120238
1.022044
431
1.115184
1.083855
432
1.092308
0.994153
433
1.054788
1.000887
434
1.080047
0.963841
435
1.106006
1.249450
436
1.070871
0.943820
437
1.070871
1.061174
438
1.070333
1.251577
439
1.085267
1.035799
440
1.075161
1.165877
441
1.091282
1.043071
442
1.072540
0.989178
443
1.078436
1.149422
444
1.091205
1.114901
445
1.065845
1.076124
446
1.059300
1.049454
447
1.076356
1.183229
448
1.147282
1.401745
449
1.090527
1.351454
450
1.069131
1.237206
451
1.050157
1.215053
452
1.086993
1.358676
453
1.053254
1.361618
454
1.056643
1.333838
455
1.058302
1.085583
456
1.032046
0.995569
457
1.008503
0.966759
458
1.117654
1.375737
459
1.102223
1.163363
460
1.046829
1.008651
461
1.011617
1.023910
462
0.980934
1.115415
463
1.048712
1.151620
464
1.032450
1.206094
465
0.984234
1.031450
466
0.987607
1.097478
467
0.987273
1.071471
468
1.039078
1.128899
469
1.041364
1.036599
470
1.026792
1.023140
471
0.995746
1.029768
472
1.016676
1.389692
473
1.085409
1.466133
474
1.054654
1.144197
475
1.043647
1.035218
476
0.995357
0.975965
477
0.948631
1.012168
478
0.961837
1.282647
479
0.976440
1.053150
480
0.967109
0.999978
481
0.958074
0.988373
482
0.979052
1.203160
483
1.015096
1.134706
484
1.000528
1.289471
485
0.970199
1.038862
486
0.955931
1.139367
487
0.957217
1.221477
488
0.968111
1.056445
489
0.968752
1.246219
490
0.936152
1.157507
491
0.923834
1.061511
492
0.964970
1.366825
493
0.979904
1.125712
494
0.983520
1.283570
495
0.960814
1.063096
496
0.964752
1.247837
497
0.931648
1.129026
498
0.924952
1.047862
499
0.913906
0.985613
500
0.907102
0.974655
501
0.915340
1.014510
502
1.146179
2.071034
503
1.174127
1.550154
504
1.104456
1.168931
505
1.012587
1.224941
506
0.965566
1.042627
507
0.954580
0.936823
508
0.952643
1.008588
509
0.921091
0.981943
510
0.914639
1.171606
511
0.913573
1.091047
512
0.908057
1.059175
513
0.909296
1.109985
514
0.944198
1.420725
515
0.991646
1.290912
516
0.975743
0.968057
517
0.972312
1.336792
518
0.958678
1.301989
519
0.925810
1.088971
520
0.900051
1.144044
521
0.920674
1.430616
522
0.939191
1.095484
523
0.927308
1.210876
524
0.953269
1.252797
525
0.946966
1.328067
526
0.921482
1.056373
527
0.898009
1.217425
528
0.901884
1.022863
529
0.892360
1.083346
530
0.887790
1.270988
531
0.884348
1.160321
532
0.902741
1.190246
533
0.899373
1.091390
534
0.912952
1.439956
535
0.892696
1.024812
536
0.917391
1.093660
537
0.900822
1.092431
538
0.913847
1.289136
539
0.912932
1.447971
540
0.926907
1.213845
541
0.894940
1.135317
542
0.892376
1.085982
543
0.907132
1.074678
544
0.910320
1.173201
545
0.930720
1.161922
546
0.930811
1.073511
547
0.901487
1.113637
548
0.880562
1.038002
549
0.880699
1.181004
550
0.887630
1.151142
551
0.897218
1.107100
552
0.889453
0.975140
553
0.888423
1.120916
554
0.885343
1.016620
555
0.907064
1.062283
556
0.887485
0.982990
557
0.866443
1.046641
558
0.867863
1.128648
559
0.886137
1.074078
560
0.876143
1.122109
561
0.886069
1.241346
562
0.902760
1.263236
563
0.891337
1.226332
564
0.885523
1.110422
565
0.903543
1.409671
566
0.905578
1.211512
567
0.870964
1.184890
568
0.862436
1.093589
569
0.864084
1.336304
570
0.890763
1.091543
571
0.874747
1.079868
572
0.867478
1.144863
573
0.862610
1.166470
574
0.853000
1.041198
575
0.862222
1.307386
576
0.895533
1.714845
577
0.984551
1.301803
578
0.941454
1.094902
579
0.905044
1.055963
580
0.896831
1.022852
581
0.904398
0.972445
582
0.889716
0.968284
583
0.886650
1.240809
584
0.867151
0.980582
585
0.848327
0.875426
586
0.851145
1.090127
587
0.873911
1.052685
588
0.872379
1.061104
589
0.851140
1.209224
590
0.844674
1.024403
591
0.842691
0.955762
592
0.881547
1.153507
593
0.919638
1.422666
594
0.895097
1.014092
595
0.869415
1.062013
596
0.855500
1.075615
597
0.853529
0.969111
598
0.839064
1.101453
599
0.844297
0.993408
600
0.851961
1.014568
601
0.873269
1.215558
602
0.859130
1.044851
603
0.843127
1.008511
604
0.872774
1.151309
605
0.855898
0.984413
606
0.847847
0.949259
607
0.844413
1.107015
608
0.839789
1.122107
609
0.846807
0.977051
610
0.847985
1.435756
611
0.838725
1.011777
612
0.848988
1.002699
613
0.855769
1.011008
614
0.857577
1.305605
615
0.862495
1.244464
616
0.857945
1.094436
617
0.860902
1.271808
618
0.844984
1.059704
619
0.838952
1.169378
620
0.837775
1.118436
621
0.835066
1.160237
622
0.836762
0.991040
623
0.836536
1.195807
624
0.835562
1.093036
625
0.829162
1.040759
626
0.830330
1.284544
627
0.833041
1.069010
628
0.835254
1.064745
629
0.827671
1.135488
630
0.833137
1.036021
631
0.840805
1.107807
632
0.826321
1.132348
633
0.823453
0.995401
634
0.821506
1.027691
635
0.819740
0.927622
636
0.836447
0.987126
637
0.842035
1.060310
638
0.833659
1.046481
639
0.825903
0.996440
640
0.817899
0.953995
641
0.810216
1.098258
642
0.810228
0.998028
643
0.803249
1.098265
644
0.806203
1.057522
645
0.816850
1.091266
646
0.813210
1.086009
647
0.822264
1.076736
648
0.829965
1.063599
649
0.813017
0.917146
650
0.801465
0.909874
651
0.807201
0.999517
652
0.807578
1.132426
653
0.796853
0.986325
654
0.807043
1.090564
655
0.826879
1.331797
656
0.829426
1.023774
657
0.823591
0.985216
658
0.807589
0.960760
659
0.801675
1.033728
660
0.811469
1.277154
661
0.806423
1.106203
662
0.800555
0.975368
663
0.798904
1.022122
664
0.812207
1.129641
665
0.816796
1.211773
666
0.810770
0.946657
667
0.804401
1.051264
668
0.792902
1.095970
669
0.794236
1.022404
670
0.787734
1.027598
671
0.784444
1.006520
672
0.780592
1.117429
673
0.799805
1.190623
674
0.799232
1.067782
675
0.798135
1.224293
676
0.794869
1.110984
677
0.793007
1.121247
678
0.804006
1.136818
679
0.797836
0.962311
680
0.793374
1.120503
681
0.796810
1.043248
682
0.789797
1.053794
683
0.784834
1.103805
684
0.782840
1.168060
685
0.780005
1.016387
686
0.794884
1.165973
687
0.799724
1.247060
688
0.790794
1.039717
689
0.793343
1.115716
690
0.782991
1.080656
691
0.807784
1.189500
692
0.823292
1.000307
693
0.804062
1.090364
694
0.793062
1.091623
695
0.791578
1.040451
696
0.792815
1.124261
697
0.789471
1.139098
698
0.773810
0.894722
699
0.773115
0.994904
700
0.767268
0.949285
701
0.772640
0.881791
702
0.775575
0.857439
703
0.771735
1.014920
704
0.781022
1.025451
705
0.780877
1.044818
706
0.778253
1.095107
707
0.784953
0.948148
708
0.777600
0.899746
709
0.784651
1.191636
710
0.789911
1.008405
711
0.777190
1.122534
712
0.775289
0.930563
713
0.788249
1.176969
714
0.780464
0.949094
715
0.781706
0.954088
716
0.776990
1.089325
717
0.767466
0.927874
718
0.765728
0.996370
719
0.776090
0.924645
720
0.778412
0.993001
721
0.772923
0.967611
722
0.775635
0.994078
723
0.776029
0.989254
724
0.774227
0.997625
725
0.775474
1.059371
726
0.775706
1.001083
727
0.771084
0.864440
728
0.766138
0.995703
729
0.766133
0.944360
730
0.765690
1.004348
731
0.773531
1.079115
732
0.776125
1.009655
733
0.774581
1.020104
734
0.769743
0.945504
735
0.770478
1.034992
736
0.771716
1.001741
737
0.768966
1.187325
738
0.757624
0.927343
739
0.757958
0.995819
740
0.763217
1.105577
741
0.760906
0.978321
742
0.756923
0.981269
743
0.754366
0.847235
744
0.756614
0.969393
745
0.760095
1.014581
746
0.765181
1.103655
747
0.765889
0.953695
748
0.759097
1.018807
749
0.756400
0.939846
750
0.753713
0.972465
751
0.761756
0.990958
752
0.760466
0.941392
753
0.752885
0.962396
754
0.747788
1.043339
755
0.781729
1.053498
756
0.761859
0.870293
757
0.751945
1.002833
758
0.752193
1.167685
759
0.749727
0.972501
760
0.743393
0.950715
761
0.750756
0.943779
762
0.748353
0.948056
763
0.756512
0.907708
764
0.752464
0.881059
765
0.754530
1.052918
766
0.748622
0.898536
767
0.738555
0.901805
768
0.746132
1.082030
769
0.749221
0.868598
770
0.753024
1.141035
771
0.746617
1.031482
772
0.747075
0.886982
773
0.747969
0.885062
774
0.745553
0.887418
775
0.749559
0.929042
776
0.743227
0.893713
777
0.742815
0.894437
778
0.745467
0.916723
779
0.747697
0.827469
780
0.744650
1.047305
781
0.752073
1.019201
782
0.749860
0.969061
783
0.749181
1.023347
784
0.748747
0.917424
785
0.734821
0.934783
786
0.746915
0.932228
787
0.739330
0.924620
788
0.742281
0.963378
789
0.740041
0.914654
790
0.741175
0.982894
791
0.739561
0.911741
792
0.733794
0.846426
793
0.738107
1.068810
794
0.736131
1.088352
795
0.741478
0.999032
796
0.743163
0.920047
797
0.739687
0.920164
798
0.734306
0.897230
799
0.731651
0.844035
800
0.721146
0.861131
801
0.734680
1.028182
802
0.737528
0.944782
803
0.730963
0.929351
804
0.730965
0.974722
805
0.734448
0.864548
806
0.732895
0.913630
807
0.732980
1.061594
808
0.733324
0.979766
809
0.729657
0.961237
810
0.727814
0.941074
811
0.727353
0.972061
812
0.731879
0.908102
813
0.730168
1.039000
814
0.736374
0.989615
815
0.734455
0.883600
816
0.729560
0.870881
817
0.726577
0.898660
818
0.724600
0.985955
819
0.728151
0.935524
820
0.720803
0.876508
821
0.728031
0.935639
822
0.727914
0.938764
823
0.728794
0.864619
824
0.727891
0.890712
825
0.726596
1.025266
826
0.720304
0.878950
827
0.716872
0.848934
828
0.713113
0.880319
829
0.711034
0.863109
830
0.715608
0.814364
831
0.726445
0.923044
832
0.720343
0.854810
833
0.718736
0.906339
834
0.716176
0.870851
835
0.714877
0.864307
836
0.720209
0.862737
837
0.714243
0.957447
838
0.717403
0.893595
839
0.717847
0.893454
840
0.715421
1.040448
841
0.724110
0.978225
842
0.715808
0.867764
843
0.714216
0.910819
844
0.716511
0.805044
845
0.717949
0.813127
846
0.711776
0.858779
847
0.709832
0.850442
848
0.711467
0.841794
849
0.710222
0.870215
850
0.709411
0.845549
851
0.711619
0.940342
852
0.723777
1.115767
853
0.716131
0.949048
854
0.715844
0.956969
855
0.715944
0.902914
856
0.704594
0.798729
857
0.708653
0.810425
858
0.707701
0.822143
859
0.705323
0.891059
860
0.704844
0.869537
861
0.707872
0.846439
862
0.712895
0.842333
863
0.707632
0.832624
864
0.708003
0.869369
865
0.709797
0.829236
866
0.710927
0.880660
867
0.704208
0.847315
868
0.707407
0.943645
869
0.710673
0.888249
870
0.708945
0.899161
871
0.708721
0.871947
872
0.707323
0.884404
873
0.704898
0.859324
874
0.711964
0.875159
875
0.708511
0.908678
876
0.706486
0.862439
877
0.699958
0.988981
878
0.701208
0.806030
879
0.702111
0.803371
880
0.698383
0.865659
881
0.702814
0.854976
882
0.701351
0.837038
883
0.701228
0.936313
884
0.696790
0.783488
885
0.699128
0.834240
886
0.694492
0.824264
887
0.708759
0.894412
888
0.715441
0.911876
889
0.704638
0.832572
890
0.703215
0.862817
891
0.697116
0.836047
892
0.698425
0.870035
893
0.699297
0.892340
894
0.696831
0.912007
895
0.699709
0.844741
896
0.696627
0.867281
897
0.693614
0.798143
898
0.698622
0.874184
899
0.695729
0.920366
900
0.698977
0.861460
901
0.695614
0.881189
902
0.694347
0.790403
903
0.691630
0.807493
904
0.692009
0.800270
905
0.691784
0.842008
906
0.691025
0.868865
907
0.689453
0.872737
908
0.691232
0.830679
909
0.691415
0.860676
910
0.687886
0.877394
911
0.696089
0.810432
912
0.691193
0.940414
913
0.687501
0.808703
914
0.687870
0.806610
915
0.687780
0.864379
916
0.689024
0.793671
917
0.692751
0.815931
918
0.688499
0.820763
919
0.691410
0.847641
920
0.684840
0.751686
921
0.687992
0.835251
922
0.690549
0.810158
923
0.684131
0.950291
924
0.683891
0.879395
925
0.686167
0.842533
926
0.686707
0.802099
927
0.685564
0.855271
928
0.688618
0.931432
929
0.684935
0.795253
930
0.682521
0.839069
931
0.679047
0.831214
932
0.680619
0.891550
933
0.679341
0.805747
934
0.678359
0.830846
935
0.675115
0.866958
936
0.677094
0.859987
937
0.678393
0.846829
938
0.681151
0.841484
939
0.680150
0.851964
940
0.677627
0.839851
941
0.678348
0.781058
942
0.679629
0.832828
943
0.682316
0.850524
944
0.680994
0.812202
945
0.680507
0.889320
946
0.677821
0.916010
947
0.680392
0.825557
948
0.678395
0.872773
949
0.676246
0.800302
950
0.676250
0.846262
951
0.677357
0.870449
952
0.673545
0.853779
953
0.673320
0.792042
954
0.671273
0.891784
955
0.676534
0.826691
956
0.679341
0.875225
957
0.673413
0.832463
958
0.672372
0.819134
959
0.671977
0.767326
960
0.677966
0.846309
961
0.681284
0.791350
962
0.676949
0.846158
963
0.675040
0.826414
964
0.676690
0.761458
965
0.671867
0.821650
966
0.676556
0.871943
967
0.674499
0.829330
968
0.672303
0.847694
969
0.665512
0.813679
970
0.669278
0.761580
971
0.673285
0.754237
972
0.664872
0.801204
973
0.672751
0.859591
974
0.674433
0.885510
975
0.671010
0.775857
976
0.672554
0.809629
977
0.669056
0.856227
978
0.673660
0.828411
979
0.673582
0.792942
980
0.669834
0.791319
981
0.669015
0.771744
982
0.669138
0.817970
983
0.665825
0.787764
984
0.665621
0.778970
985
0.669213
0.828286
986
0.666597
0.792300
987
0.664546
0.845869
988
0.665963
0.775961
989
0.668584
0.759132
990
0.663169
0.803699
991
0.664586
0.783680
992
0.665895
0.837959
993
0.670097
0.936173
994
0.684231
0.751526
995
0.673544
0.803969
996
0.669284
0.746320
997
0.662261
0.777992
998
0.665223
0.782177
999
0.662217
0.766295
1000
0.665060
0.806641
1001
0.667805
0.829915
1002
0.661072
0.750263
1003
0.661988
0.825518
1004
0.663190
0.769702
1005
0.666006
0.825982
1006
0.663245
0.741869
1007
0.660379
0.726722
1008
0.660101
0.783736
1009
0.661046
0.765709
1010
0.660281
0.817396
1011
0.666019
0.759981
1012
0.659748
0.762644
1013
0.660306
0.790705
1014
0.657705
0.789044
1015
0.657471
0.764003
1016
0.659200
0.781528
1017
0.660572
0.737372
1018
0.660176
0.799328
1019
0.660415
0.779304
1020
0.658069
0.770015
1021
0.660025
0.760188
1022
0.664385
0.785731
1023
0.660180
0.784523
1024
0.659672
0.763296
1025
0.661156
0.810888
1026
0.659612
0.772739
1027
0.659243
0.782291
1028
0.658875
0.766459
1029
0.657795
0.789502
1030
0.656767
0.798486
1031
0.657850
0.787247
1032
0.658282
0.799804
1033
0.654589
0.709746
1034
0.655311
0.763662
1035
0.653087
0.763926
1036
0.655982
0.734696
1037
0.654717
0.751285
1038
0.658382
0.766659
1039
0.657278
0.764040
1040
0.656311
0.750626
1041
0.656944
0.820196
1042
0.658349
0.748715
1043
0.655871
0.788636
1044
0.654994
0.822941
1045
0.655479
0.799764
1046
0.656514
0.737144
1047
0.649894
0.805239
1048
0.650339
0.804330
1049
0.650141
0.756045
1050
0.650061
0.749410
1051
0.647567
0.767187
1052
0.649617
0.759734
1053
0.650453
0.750897
1054
0.651638
0.728631
1055
0.652979
0.783682
1056
0.652585
0.768384
1057
0.652476
0.770752
1058
0.650278
0.734991
1059
0.653008
0.756854
1060
0.653195
0.787418
1061
0.648228
0.796529
1062
0.647135
0.729970
1063
0.644596
0.752595
1064
0.648498
0.765084
1065
0.646670
0.729753
1066
0.649001
0.707670
1067
0.650686
0.764547
1068
0.647451
0.770668
1069
0.645878
0.749608
1070
0.650991
0.734407
1071
0.646143
0.751822
1072
0.647684
0.735328
1073
0.645322
0.716916
1074
0.647059
0.745185
1075
0.644670
0.729162
1076
0.647191
0.748706
1077
0.646066
0.736758
1078
0.646802
0.757314
1079
0.643648
0.745664
1080
0.645230
0.761547
1081
0.646929
0.761049
1082
0.647249
0.732631
1083
0.649055
0.748741
1084
0.649080
0.716450
1085
0.647515
0.719512
1086
0.643199
0.727252
1087
0.641246
0.729183
1088
0.644538
0.739485
1089
0.643240
0.780142
1090
0.643133
0.752972
1091
0.643133
0.727722
1092
0.643802
0.744187
1093
0.646501
0.726404
1094
0.646646
0.738539
1095
0.644097
0.730937
1096
0.646505
0.715581
1097
0.646837
0.709423
1098
0.643154
0.731368
1099
0.645610
0.718226
1100
0.647599
0.752944
1101
0.648089
0.733963
1102
0.644856
0.703665
1103
0.644086
0.723700
1104
0.643739
0.715129
1105
0.643553
0.739854
1106
0.642523
0.766207
1107
0.645852
0.777687
1108
0.645866
0.746947
1109
0.645445
0.714128
1110
0.643787
0.727941
1111
0.643760
0.747783
1112
0.644347
0.733634
1113
0.644480
0.758410
1114
0.643343
0.753454
1115
0.642357
0.728598
1116
0.643221
0.714109
1117
0.646445
0.736958
1118
0.644331
0.745202
1119
0.644654
0.714243
1120
0.644417
0.765107
1121
0.644907
0.754324
1122
0.642576
0.697855
1123
0.646285
0.745454
1124
0.641681
0.710213
1125
0.644990
0.721458
1126
0.643812
0.721383
1127
0.645745
0.742442
1128
0.648453
0.749649
1129
0.646743
0.717157
1130
0.645376
0.747578
1131
0.645301
0.724905
1132
0.646012
0.704490
1133
0.641669
0.714795
1134
0.642740
0.738313
1135
0.637687
0.747541
1136
0.640694
0.720819
1137
0.644182
0.746988
1138
0.642556
0.731388
1139
0.639945
0.720420
1140
0.642499
0.726258
1141
0.641224
0.708160
1142
0.644038
0.730689
1143
0.643929
0.719348
1144
0.638714
0.701241
1145
0.640931
0.732247
1146
0.640435
0.719132
1147
0.639757
0.717207
1148
0.642790
0.731193
1149
0.642278
0.730272
1150
0.645015
0.737245
1151
0.643806
0.719098
1152
0.639916
0.709664
1153
0.637062
0.719392
1154
0.640473
0.750379
1155
0.639099
0.735684
1156
0.641073
0.727158
1157
0.642462
0.728299
1158
0.635983
0.714539
1159
0.639057
0.752869
1160
0.638976
0.714870
1161
0.641427
0.760830
1162
0.643727
0.757367
1163
0.638725
0.719032
1164
0.637524
0.720744
1165
0.641172
0.735543
1166
0.642043
0.752918
1167
0.641511
0.739002
1168
0.638537
0.722362
1169
0.641185
0.762532
1170
0.639625
0.731832
1171
0.636890
0.735039
1172
0.636665
0.762729
1173
0.639802
0.716954
1174
0.642187
0.735525
1175
0.638984
0.732821
1176
0.641138
0.733477
1177
0.643438
0.750418
1178
0.640604
0.722559
1179
0.642636
0.717998
1180
0.645006
0.724573
1181
0.641638
0.708618
1182
0.643429
0.728919
1183
0.637789
0.723381
1184
0.638534
0.740963
1185
0.636412
0.735274
1186
0.639462
0.711557
1187
0.638774
0.713746
1188
0.638178
0.730665
1189
0.640817
0.708878
1190
0.638167
0.742666
1191
0.637267
0.721098
1192
0.643558
0.725099
1193
0.640917
0.753712
1194
0.638587
0.735159
1195
0.639436
0.739438
1196
0.639904
0.732085
1197
0.637869
0.724996
1198
0.645408
0.726316
1199
0.642748
0.731800
1200
0.639895
0.708442
In [8]:
l.recorder.plot_losses()
In [14]:
l.save(f"speedup_{optimizer}_batch_norm_{batch_norm}_{loss_func}_nlayers_{len(layers_sizes)}")
In [3]:
val_df = pd.DataFrame()
train_df = pd.DataFrame()
preds, targets = l.get_preds(fai.basic_data.DatasetType.Valid)
preds = preds.reshape((-1,)).numpy()
targets = targets.reshape((-1,)).numpy()
val_df['prediction'] = preds
val_df['target'] = targets
val_df['abs_diff'] = np.abs(preds - targets)
val_df['APE'] = np.abs(val_df.target - val_df.prediction)/val_df.target * 100
preds, targets = l.get_preds(fai.basic_data.DatasetType.Train)
preds = preds.reshape((-1,)).numpy()
targets = targets.reshape((-1,)).numpy()
train_df['prediction'] = preds
train_df['target'] = targets
train_df['abs_diff'] = np.abs(preds - targets)
train_df['APE'] = np.abs(train_df.target - train_df.prediction)/train_df.target * 100
In [15]:
val_df.describe() #L2 loss
Out[15]:
prediction
target
abs_diff
APE
count
10000.000000
10000.000000
10000.000000
10000.000000
mean
2.190411
2.027992
0.572748
75.797997
std
1.594023
1.919017
0.616799
148.084808
min
0.190113
0.030862
0.000204
0.003586
25%
1.081163
0.652639
0.164485
9.994051
50%
1.673501
1.392690
0.374921
24.825982
75%
2.846386
2.590816
0.760336
70.129059
max
10.311938
13.272740
5.860677
2385.351807
In [14]:
joint_plot(train_df, f"Validation dataset, {loss_func} loss")
In [13]:
rand_prog = 'function' + str(np.random.randint(0, 400))
joint_plot_one_program(val_dl, 'function46', l.model)
In [ ]:
Content source: rbaghdadi/COLi
Similar notebooks: