In [1]:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
In [2]:
DATA_DIR = '/tmp/data'
NUM_STEPS = 1000
MINIBATCH_SIZE = 100
In [3]:
data = input_data.read_data_sets(DATA_DIR, one_hot = True)
In [4]:
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y_true = tf.placeholder(tf.float32, [None, 10])
y_pred = tf.matmul(x, W)
In [5]:
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y_pred, labels = y_true))
gd_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
In [6]:
correct_mask = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_true, 1))
accuracy = tf.reduce_mean(tf.cast(correct_mask, tf.float32))
In [7]:
with tf.Session() as sess:
# train
sess.run(tf.global_variables_initializer())
for _ in range(NUM_STEPS):
batch_xs, batch_ys = data.train.next_batch(MINIBATCH_SIZE)
sess.run(gd_step, feed_dict = {x: batch_xs, y_true: batch_ys})
# test
ans = sess.run(accuracy, feed_dict = {x: data.test.images, y_true: data.test.labels})
print("accuracy : {:.4}%".format(ans*100))
In [ ]: