In [30]:
import pandas
df = pandas.read_csv("shared/pathway_commons.sif",
sep="\t",
names=["species1","interaction_type","species2"])
In [4]:
interaction_types_ppi = set(["interacts-with",
"in-complex-with",
"neighbor-of"])
interaction_types_metab = set(["controls-production-of",
"consumption-controlled-by",
"controls-production-of",
"controls-transport-of-chemical"])
interaction_types_ppd = set(["catalysis-precedes",
"controls-phosphorylation-of",
"controls-state-change-of",
"controls-transport-of",
"controls-expression-of"])
In [38]:
ppirows = df.interaction_type.isin(interaction_types_ppi)
metabrows = df.interaction_type.isin(interaction_types_metab)
ppdrows = df.interaction_type.isin(interaction_types_ppd)
df_ppi = df[df.interaction_type.isin(interaction_types_ppi)]
df_metab = df[df.interaction_type.isin(interaction_types_metab)]
df_ppd = df[df.interaction_type.isin(interaction_types_ppd)]
df_ppi_el = df_ppi[["species1","species2"]].values.tolist()
df_metab_el = df_metab[["species1","species2"]].values.tolist()
df_ppd_el = df_ppd[["species1","species2"]].values.tolist()
In [45]:
from igraph import Graph
from igraph import summary
graph_ppi = Graph.TupleList(df_ppi_el)
summary(graph_ppi)
In [47]:
graph_metab = Graph.TupleList(df_metab_el, directed=True)
summary(graph_metab)
In [48]:
graph_ppd = Graph.TupleList(df_ppd_el, directed=True)
summary(graph_ppd)
In [51]:
type(df_ppi_el)
Out[51]:
In [ ]: