In [3]:
! ==============================================================================
! 				MACULA version 1.3			       !
! ==============================================================================
!
! AUTHOR: David Kipping
!         Harvard-Smithsonian Center for Astrophysics
!         Please report any problems to: dkipping@cfa.harvard.edu
!
! CITATION: If using this code, please cite:
!            Kipping, D. M., 2012, 'An Analytic Model for Rotational Modulations
!            in the Photometry of Spotted Stars', MNRAS, 427, 2487
!
! DESCRIPTION: MACULA computes the photometric flux variations due to starspots
!              on the surface of a rotating star. Star is assumed to be
!              spherical and exhibit four-coefficient non-linear limb darkening.
!              Starspots are circular, gray and exhibit four-coefficient
!              non-linear limb darkening too. MACULA allows for multiple 
!              starspots which are assumed to not overlap. Differential
!              rotation and starspot evolution is included. Partial derivatives
!              are provided of the model flux with respect to the model inputs,
!              as well as time. Finally, expected transit depth variations due
!              to unocculted spots is evaluated.
!
! CHANGES: v1.1 - Corrected an error in the calculation of TdeltaV's
!          v1.2 - Corrected a bug with tref (thanks to Bence Beky)
!          v1.3 - Several minor speed improvements: converted heaviside 
!                 functions to 'if' statements, some trig replacements, complex 
!                 functions removed and replaced using 'if' statements.
!                 Yields ~100% faster execution times with derivatives off
!                 Yields ~20% faster execution times with derivatives on
!              
! INPUTS:
!
! ------------------------------------------------------------------------------
! Theta_star(j) = Parameter vector for the star's intrinsic parameters
! ------------------------------------------------------------------------------
! Istar 	= Theta_star(1)		! Inclination of the star [rads]
! Peq 		= Theta_star(2)		! Rot'n period of the star's equator [d]
! kappa2 	= Theta_star(3)		! Quadratic differential rotation coeff
! kappa4 	= Theta_star(4)		! Quartic differential rotation coeff
! c1 		= Theta_star(5)		! 1st of four-coeff stellar LD terms
! c2 		= Theta_star(6)		! 2nd of four-coeff stellar LD terms
! c3 		= Theta_star(7)		! 3rd of four-coeff stellar LD terms
! c4 		= Theta_star(8)		! 4th of four-coeff stellar LD terms
! d1 		= Theta_star(9)		! 1st of four-coeff spot LD terms
! d2	 	= Theta_star(10)	! 2nd of four-coeff spot LD terms
! d3	 	= Theta_star(11)	! 3rd of four-coeff spot LD terms
! d4	 	= Theta_star(12)	! 4th of four-coeff spot LD terms
! ------------------------------------------------------------------------------
! Theta_spot(j,k) = Parameters of the k^th spot
! ------------------------------------------------------------------------------
! Lambda0(k) 	= Theta_spot(1,k)	! Longitude of spot at time tref(k)
! Phi0(k) 	= Theta_spot(2,k)	! Latitude of spot at time tref(k)
! alphamax(k)	= Theta_spot(3,k)	! Angular spot size at time tmax(k)
! fspot(k)	= Theta_spot(4,k)	! Spot-to-star flux contrast of spot k
! tmax(k)	= Theta_spot(5,k)	! Time at which spot k is largest
! life(k)	= Theta_spot(6,k)	! Lifetime of spot k (FWFM) [days]
! ingress(k)	= Theta_spot(7,k)	! Ingress duration of spot k [days]
! egress(k)	= Theta_spot(8,k)	! Egress duration of spot k  [days]
! ------------------------------------------------------------------------------
! Theta_inst(j,m) = Instrumental/nuisance parameters
! ------------------------------------------------------------------------------
! U(m) 		= Theta_inst(1,m)	! Baseline flux level for m^th data set
! B(m) 		= Theta_inst(2,m)	! Blend factor for m^th data set
! ------------------------------------------------------------------------------
! Non-fitted input parameters
! ------------------------------------------------------------------------------
! Tstart(m)				! Time stamp @ start of m^th data series 
! Tend(m)				! Time stamp @ end of m^th data series
! t(i)					! Time stamp of i^th data point [days]
! ndata					! Number of data points
! mmax					! Number of data sets
! Nspot					! Number of starspots (over all times)
! derivatives				! Compute partial derivatives?
! temporal				! Compute temporal derivatives?
! TdeltaV				! Compute transit depth variations?
! ------------------------------------------------------------------------------
!
! OUTPUTS:
!
! Fmod(i)				! Model flux
! deltaratio(i)				! Transit depth variations prediction
! dFmod_star(i,j)			! Partial derivs of Fmod wrt Theta_star
! dFmod_spot(i,j,k)			! Partial derivs of Fmod wrt Theta_spot
! dFmod_inst(i,j,m)			! Partial derivs of Fmod wrt Theta_inst
! dFmoddt(i)				! Partial derivs of Fmod wrt time
!
! ==============================================================================

MODULE maculamod

implicit none

CONTAINS

! ==============================================================================
! ============================= SUBROUTINE: MACULA =============================
! ==============================================================================

SUBROUTINE macula(t,ndata,Nspot,mmax,derivatives,temporal,TdeltaV,& !Controls
                  Theta_star,Theta_spot,Theta_inst,&	  !System parameters
                  Tstart,Tend,&				  !Data start/end times
                  Fmod,dFmod_star,dFmod_spot,dFmod_inst,dFmoddt,deltaratio)!Outs

implicit none

 ! === PRE-AMBLE ===
 ! Note - There should be no need to ever change these three parameters.
 INTEGER, PARAMETER :: pstar = 12
 INTEGER, PARAMETER :: pspot = 8
 INTEGER, PARAMETER :: pinst = 2
 ! === INPUTS ===
 REAL(8), DIMENSION(ndata), INTENT(IN) :: t
 REAL(8), DIMENSION(pstar), INTENT(IN) :: Theta_star
 REAL(8), DIMENSION(pspot,Nspot), INTENT(IN) :: Theta_spot
 REAL(8), DIMENSION(pinst,mmax), INTENT(IN) :: Theta_inst
 REAL(8), DIMENSION(mmax), INTENT(IN) :: Tstart, Tend
 LOGICAL, INTENT(IN) :: derivatives ! Calculate partial derivatives?
 LOGICAL, INTENT(IN) :: temporal    ! Calculate temporal derivatives?
 LOGICAL, INTENT(IN) :: TdeltaV     ! Calculate transit depth variations?
 ! === VARIABLES ===
 INTEGER :: i, j, k, l, m, n
 INTEGER, INTENT(IN) :: ndata, mmax, Nspot
 INTEGER :: jmax
 REAL(8), DIMENSION(Nspot) :: tref ! By default, macula will set tref(k)=tmax(k)
 REAL(8) :: SinInc, CosInc
 REAL(8), PARAMETER :: pi = 3.141592653589793D0
 REAL(8), PARAMETER :: halfpi = 1.5707963267948966D0
 REAL(8), PARAMETER :: piI = 0.3183098861837907D0
 REAL(8), PARAMETER :: tol = 1.0D-4 ! alpha values below this will be ignored
 REAL(8), PARAMETER :: mingress = 0.0416667D0 ! minimum ingress/egress time allowed
 ! === SECTION 1 ===
 REAL(8), DIMENSION(pstar+pspot*Nspot+pinst*mmax) :: Theta
 ! === SECTION 2 ===
 REAL(8), DIMENSION(5) :: c, d
 REAL(8), DIMENSION(mmax) :: U, B
 REAL(8), DIMENSION(mmax,ndata) :: Box
 REAL(8), DIMENSION(Nspot) :: Phi0, SinPhi0, CosPhi0, Prot
 REAL(8), DIMENSION(Nspot,ndata) :: beta, sinbeta, cosbeta
 REAL(8), DIMENSION(Nspot,ndata) :: alpha, sinalpha, cosalpha
 REAL(8), DIMENSION(Nspot,ndata) :: Lambda, sinLambda, cosLambda
 REAL(8), DIMENSION(Nspot) :: tcrit1, tcrit2, tcrit3, tcrit4
 REAL(8), DIMENSION(Nspot) :: alphamax, fspot, tmax, life, ingress, egress
 ! === SECTION 3 ===
 REAL(8), DIMENSION(Nspot,ndata) :: zetaneg, zetapos
 REAL(8), DIMENSION(5,Nspot,ndata) :: Upsilon, w
 REAL(8), DIMENSION(Nspot,ndata) :: Psi, Xi
 REAL(8), DIMENSION(Nspot,ndata) :: q, A
 REAL(8) :: Fab0
 REAL(8), DIMENSION(ndata) :: Fab
 REAL(8), DIMENSION(ndata), INTENT(OUT) :: Fmod, deltaratio
 ! === SECTION 4 ===
 REAL(8), DIMENSION(5,pstar+pspot*Nspot+pinst*mmax) :: dc, dd
 REAL(8), DIMENSION(mmax,pstar+pspot*Nspot+pinst*mmax) :: dU, dB
 REAL(8), DIMENSION(Nspot,pstar+pspot*Nspot+pinst*mmax) :: dfspot
 ! === SECTION 5 ===
 REAL(8), DIMENSION(Nspot,ndata,pstar+pspot*Nspot+pinst*mmax) :: dalpha
 REAL(8), DIMENSION(Nspot,ndata,pstar+pspot*Nspot+pinst*mmax) :: dbeta
 ! === SECTION 6 ===
 REAL(8), DIMENSION(Nspot,ndata) :: epsil, dAda, dAdb
 REAL(8), DIMENSION(Nspot,ndata,pstar+pspot*Nspot+pinst*mmax) ::  dA
 ! === SECTION 7 ===
 REAL(8), DIMENSION(5,Nspot,ndata,pstar+pspot*Nspot+pinst*mmax) :: dUpsilon, dw
 REAL(8), DIMENSION(Nspot,ndata,pstar+pspot*Nspot+pinst*mmax) :: dzetaneg
 REAL(8), DIMENSION(Nspot,ndata,pstar+pspot*Nspot+pinst*mmax) :: dzetapos
 REAL(8), DIMENSION(Nspot,ndata,pstar+pspot*Nspot+pinst*mmax) :: dq
 REAL(8), DIMENSION(mmax,ndata,pstar+pspot*Nspot+pinst*mmax) :: dFtilde
 REAL(8), DIMENSION(ndata,pstar+pspot*Nspot+pinst*mmax) :: dFab, dFmod
 REAL(8), DIMENSION(Nspot,ndata) :: dzetanegda, dzetaposda
 REAL(8), DIMENSION(pstar+pspot*Nspot+pinst*mmax) :: dFab0
 ! === SECTION 8 ===
 REAL(8), DIMENSION(Nspot,ndata) :: dalphadt, dbetadt, dzetanegdt, dzetaposdt
 REAL(8), DIMENSION(Nspot,ndata) :: dqdt, dAdt
 REAL(8), DIMENSION(5,Nspot,ndata) :: dwdt, dUpsilondt
 REAL(8), DIMENSION(mmax,ndata) :: dFtildedt
 REAL(8), DIMENSION(ndata) :: dFabdt
 REAL(8), DIMENSION(ndata), INTENT(OUT) :: dFmoddt
 ! === SECTION 9 ===
 REAL(8), DIMENSION(ndata,pstar), INTENT(OUT) :: dFmod_star
 REAL(8), DIMENSION(ndata,pspot,Nspot), INTENT(OUT) :: dFmod_spot
 REAL(8), DIMENSION(ndata,pinst,mmax), INTENT(OUT) :: dFmod_inst

 ! ===================================
 ! === SECTION 1: THETA ASSIGNMENT ===
 ! ===================================

 jmax = pstar + pspot*Nspot + pinst*mmax

 l = 0
 DO j=1,pstar
   l = l + 1
   Theta(l) = Theta_star(j)
 END DO
 DO k=1,Nspot
   DO j=1,pspot
     l = l + 1
     Theta(l) = Theta_spot(j,k)
   END DO
 END DO
 DO j=1,pinst
   DO m=1,mmax
     l = l + 1
     Theta(l) = Theta_inst(j,m)
   END DO
 END DO

 ! Thus we have...
 !Theta_star(j) = Theta(j)
 !Theta_spot(j,k) = Theta(pstar + pspot*(k-1) + j)
 !Theta_inst(m) = Theta(pstar + pspot*Nspot + m)

 ! ===================================
 ! === SECTION 2: BASIC PARAMETERS ===
 ! ===================================

 ! c and d assignment
 c(2) = Theta(5); c(3) = Theta(6); c(4) = Theta(7); c(5) = Theta(8)
 d(2) = Theta(9); d(3) =Theta(10); d(4)= Theta(11); d(5)= Theta(12)
 c(1) = 1.0D0 - c(2) - c(3) - c(4) - c(5) !c0
 d(1) = 1.0D0 - d(2) - d(3) - d(4) - d(5) !d0

 ! inclination substitutions
 SinInc = DSIN(Theta(1))
 CosInc = DCOS(Theta(1))

 ! U and B assignment
 DO m=1,mmax
   U(m) = Theta(pstar+pspot*Nspot+m)
   B(m) = Theta(pstar+pspot*Nspot+mmax+m)
 END DO

 ! Box-car function (labelled as Pi_m in the paper)
 DO i=1,ndata
   DO m=1,mmax
     IF( t(i) .GT. Tstart(m) .AND. t(i) .LT. Tend(m) ) THEN
       Box(m,i) = 1.0D0
     ELSE
       Box(m,i) = 0.0D0
     END IF
   END DO
 END DO

 ! Phi0 & Prot calculation
 DO k=1,Nspot
   Phi0(k) = Theta(pstar+pspot*(k-1)+2)
 END DO
 DO k=1,Nspot
   SinPhi0(k) = DSIN(Phi0(k))
   CosPhi0(k) = DCOS(Phi0(k))
   Prot(k) = Theta(2)/(1.0D0-Theta(3)*SinPhi0(k)**2-Theta(4)*SinPhi0(k)**4)
 END DO

 ! alpha calculation
 DO k=1,Nspot
   alphamax(k)	= Theta(pstar + pspot*(k-1) + 3)
   fspot(k)	= Theta(pstar + pspot*(k-1) + 4)
   tmax(k)	= Theta(pstar + pspot*(k-1) + 5)
   life(k)	= Theta(pstar + pspot*(k-1) + 6)
   ingress(k)	= Theta(pstar + pspot*(k-1) + 7)
   egress(k)	= Theta(pstar + pspot*(k-1) + 8)
   IF( ingress(k) .LT. mingress ) THEN ! minimum ingress time
      ingress = mingress
   END IF
   IF( egress(k) .LT. mingress ) THEN ! minimum egress time
      egress = mingress
   END IF
 END DO
 ! macula defines the reference time = maximum spot-size time
 ! However, one can change the line below to whatever they wish.
 tref(:) = tmax(:)
 ! tcrit points = critical instances in the evolution of the spot
 DO k=1,Nspot
   tcrit1(k) = tmax(k) - 0.5D0*life(k) - ingress(k)
   tcrit2(k) = tmax(k) - 0.5D0*life(k)
   tcrit3(k) = tmax(k) + 0.5D0*life(k)
   tcrit4(k) = tmax(k) + 0.5D0*life(k) + egress(k)
 END DO
 ! temporal evolution of alpha
 DO i=1,ndata
   DO k=1,Nspot
     IF( t(i) .LT. tcrit1(k) .OR. t(i) .GT. tcrit4(k) ) THEN
       alpha(k,i) = 0.0D0
     ELSE IF( t(i) .LT. tcrit3(k) .AND. t(i) .GT. tcrit2(k) ) THEN
       alpha(k,i) = alphamax(k)
     ELSE IF( t(i) .LE. tcrit2(k) .AND. t(i) .GE. tcrit1(k) ) THEN
       alpha(k,i) = alphamax(k)*( ( t(i) - tcrit1(k) )/( ingress(k) ) )
     ELSE !IF( t(i) .LE. tcrit4(k) .AND. t(i) .GE. tcrit3(k) ) THEN
       alpha(k,i) = alphamax(k)*( ( tcrit4(k) - t(i) )/( egress(k) ) )
     END IF
     sinalpha(k,i) = DSIN(alpha(k,i))
     cosalpha(k,i) = DCOS(alpha(k,i))
   END DO
 END DO

 ! Lambda calculation
 DO i=1,ndata
   DO k=1,Nspot
     Lambda(k,i) = Theta(pstar+pspot*(k-1)+1) + 2.0D0*pi*(t(i)-tref(k))/Prot(k)
     sinLambda(k,i) = DSIN(Lambda(k,i))
     cosLambda(k,i) = DCOS(Lambda(k,i))
   END DO
 END DO

 ! beta calculation
 DO i=1,ndata
   DO k=1,Nspot
     cosbeta(k,i) = CosInc*SinPhi0(k) + SinInc*CosPhi0(k)*DCOS(Lambda(k,i))
     beta(k,i) = DACOS( cosbeta(k,i) )
     sinbeta(k,i) = DSIN(beta(k,i))
   END DO
 END DO

 ! =================================
 ! === SECTION 3: COMPUTING FMOD ===
 ! =================================

 ! zetapos and zetaneg
 DO i=1,ndata
   DO k=1,Nspot
     zetapos(k,i) = zeta(beta(k,i)+alpha(k,i))
     zetaneg(k,i) = zeta(beta(k,i)-alpha(k,i))
   END DO
 END DO

 ! Upsilon
 DO i=1,ndata
   DO k=1,Nspot
     DO n=0,4
       Upsilon(n+1,k,i) = zetaneg(k,i)**2 - zetapos(k,i)**2 &
                          + kronecker(zetapos(k,i),zetaneg(k,i))
       Upsilon(n+1,k,i) = (DSQRT(zetaneg(k,i)**(n+4)) &
                          - DSQRT(zetapos(k,i)**(n+4)))&
                          /Upsilon(n+1,k,i)
     END DO
   END DO
 END DO
        
 ! w
 DO i=1,ndata
   DO k=1,Nspot
     DO n=0,4
       w(n+1,k,i) = ( 4.0D0*(c(n+1)-d(n+1)*fspot(k)) )/( n+4.0D0 )
       w(n+1,k,i) = w(n+1,k,i)*Upsilon(n+1,k,i)
     END DO
   END DO
 END DO

 ! Area A
 DO i=1,ndata
   DO k=1,Nspot
     IF( alpha(k,i) .GT. tol ) THEN
       IF( beta(k,i) .GT. (halfpi+alpha(k,i)) ) THEN
         ! Case IV
         A(k,i) = 0.0D0
       ELSE IF( beta(k,i) .LT. (halfpi-alpha(k,i)) ) THEN
         ! Case I
         A(k,i) = pi*cosbeta(k,i)*sinalpha(k,i)**2
       ELSE
         ! Case II & III
         Psi(k,i) = DSQRT(1.0D0 - (cosalpha(k,i)/sinbeta(k,i))**2 )
         Xi(k,i) = sinalpha(k,i)*DACOS( -(cosalpha(k,i)*cosbeta(k,i))&
                   /(sinalpha(k,i)*sinbeta(k,i)) )
         A(k,i) = DACOS( cosalpha(k,i)/sinbeta(k,i) ) &
                         + Xi(k,i)*cosbeta(k,i)*sinalpha(k,i) &
                         - Psi(k,i)*sinbeta(k,i)*cosalpha(k,i)
       END IF
     ELSE
       A(k,i) = 0.0D0
     END IF
   END DO
 END DO

 ! q
 DO i=1,ndata
   DO k=1,Nspot
     q(k,i) = (A(k,i)*piI)*SUM(w(:,k,i))
   END DO
 END DO

 ! Fab0
 Fab0 = 0.0D0
 DO n=0,4
   Fab0 = Fab0 + (n*c(n+1))/(n+4.0D0)
 END DO
 Fab0 = 1.0D0 - Fab0

 ! Fab
 DO i=1,ndata
   Fab(i) = Fab0 - SUM(q(:,i))
 END DO

 ! Fmod
 DO i=1,ndata
   Fmod(i) = 0.0D0
   DO m=1,mmax
     Fmod(i) = Fmod(i) + U(m)*Box(m,i)*( Fab(i)/(Fab0*B(m))+(B(m)-1.0D0)/B(m) )
   END DO
 END DO

 ! delta_{obs}/delta
 IF( TdeltaV ) THEN
   DO i=1,ndata
     deltaratio(i) = 0.0D0
     DO m=1,mmax
       deltaratio(i) = deltaratio(i) + B(m)*Box(m,i)
     END DO
     deltaratio(i) = ( Fab0/Fab(i) )/deltaratio(i)
   END DO
 ELSE
   deltaratio(:) = 1.0D0
 END IF

 ! ====================================
 ! === SECTION 4: BASIS DERIVATIVES ===
 ! ====================================
 
 ! Master if-loop
 IF( derivatives ) THEN

 ! Derivatives of c & d. Note that c_n = c(n+1) due to memory constraints.
 dc(:,:) = 0.0D0 !dc/dTheta=0 for all n and j unless Theta_j=c_n...
 dc(2,5) = 1.0D0;!d(c1)/d(Theta5) = d(c1)/(c1) = 1
 dc(3,6) = 1.0D0;!d(c2)/d(Theta6) = d(c2)/(c2) = 1
 dc(4,7) = 1.0D0;!d(c3)/d(Theta7) = d(c3)/(c3) = 1
 dc(5,8) = 1.0D0;!d(c4)/d(Theta8) = d(c4)/(c4) = 1
 dc(1,5) =-1.0D0;!d(c0)/d(Theta5) = d(c0)/(c1) =-1
 dc(1,6) =-1.0D0;!d(c0)/d(Theta6) = d(c0)/(c2) =-1
 dc(1,7) =-1.0D0;!d(c0)/d(Theta7) = d(c0)/(c3) =-1
 dc(1,8) =-1.0D0;!d(c0)/d(Theta8) = d(c0)/(c4) =-1
 dd(:,:) = 0.0D0 !dd/dTheta=0 for all n and j unless Theta_j=c_n...
 dd(2,9) = 1.0D0;!d(d1)/d(Theta9) = d(d1)/(d1) = 1
 dd(3,10)= 1.0D0;!d(d2)/d(Theta10)= d(d2)/(d2) = 1
 dd(4,11)= 1.0D0;!d(d3)/d(Theta11)= d(d3)/(d3) = 1
 dd(5,12)= 1.0D0;!d(d4)/d(Theta12)= d(d4)/(d4) = 1
 dd(1,9) =-1.0D0;!d(c0)/d(Theta9) = d(d0)/(d1) =-1
 dd(1,10)=-1.0D0;!d(c0)/d(Theta10)= d(d0)/(d2) =-1
 dd(1,11)=-1.0D0;!d(c0)/d(Theta11)= d(d0)/(d3) =-1
 dd(1,12)=-1.0D0;!d(c0)/d(Theta12)= d(d0)/(d4) =-1

 ! Derivatives of U
 dU(:,:) = 0.0D0
 DO m=1,mmax
   ! d(U_m)/d(Theta_j) for j=pstar+pspot*Nspot+m => Theta_j=U_m
   dU(m,pstar+pspot*Nspot+m) = 1.0D0 
 END DO

 ! Derivatives of B
 dB(:,:) = 0.0D0
 DO m=1,mmax
   ! d(B_m)/d(Theta_j) for j=pstar+pspot*Nspot+m+mmax => Theta_j=B_m
   dB(m,pstar+pspot*Nspot+mmax+m) = 1.0D0
 END DO

 ! Derivatives of fspot (4th spot parameter)
 DO k=1,Nspot
   dfspot(k,:) = 0.0D0
   !d(fspot_k)/d(Theta_j) for j=pstar+pspot*(k-1)+4 => Theta_j=fspot_k
   dfspot(k,pstar+pspot*(k-1)+4) = 1.0D0
 END DO

 ! ===========================================
 ! === SECTION 5: ALPHA & BETA DERIVATIVES ===
 ! ===========================================

 ! Derivatives of alpha(alphamax,tmax,life,ingress,egress) 
 ! [function of 5*Nspot parameters]
 DO i=1,ndata
   DO k=1,Nspot
     dalpha(k,i,:) = 0.0D0 
     ! wrt alphamax (3rd spot parameter)
     dalpha(k,i,pstar+pspot*(k-1)+3) = alpha(k,i)/alphamax(k)
     ! wrt tmax (5th spot parameter)
     IF( t(i) .LT. tcrit2(k) .AND. t(i) .GT. tcrit1(k) ) THEN
       dalpha(k,i,pstar+pspot*(k-1)+5) = -alphamax(k)/ingress(k)
     ELSE IF( t(i) .LT. tcrit4(k) .AND. t(i) .GT. tcrit3(k) ) THEN
       dalpha(k,i,pstar+pspot*(k-1)+5) = alphamax(k)/egress(k)
     END IF
     ! wrt life (6th spot parameter)
     IF( t(i) .LT. tcrit2(k) .AND. t(i) .GT. tcrit1(k) ) THEN
       dalpha(k,i,pstar+pspot*(k-1)+6) = 0.5D0*alphamax(k)/ingress(k)
     ELSE IF( t(i) .LT. tcrit4(k) .AND. t(i) .GT. tcrit3(k) ) THEN
       dalpha(k,i,pstar+pspot*(k-1)+6) = 0.5D0*alphamax(k)/egress(k)
     END IF
     ! wrt ingress (7th spot parameter)
     IF( t(i) .LT. tcrit2(k) .AND. t(i) .GT. tcrit1(k) ) THEN
       dalpha(k,i,pstar+pspot*(k-1)+7) = -(alphamax(k)/ingress(k)**2)*( t(i) &
                                          - 0.50D0*(tcrit1(k)+tcrit2(k)) )
     END IF
     ! wrt egress (8th spot parameter)
     IF( t(i) .LT. tcrit4(k) .AND. t(i) .GT. tcrit3(k) ) THEN
       dalpha(k,i,pstar+pspot*(k-1)+8) = (alphamax(k)/egress(k)**2)*( t(i) &
                                          - 0.50D0*(tcrit3(k)+tcrit4(k)) )
     END IF
   END DO
 END DO

 ! Stellar-derivatives of beta(Istar,Phi0,Lambda0,Peq,kappa2,kappa4) 
 ! [function of 4+2*Nspot parameters]
 DO i=1,ndata
   DO k=1,Nspot
     ! pre-amble
     dbeta(k,i,:) = 0.0D0
     ! wrt Istar (1st star parameter)
     dbeta(k,i,1) = SinPhi0(k)*SinInc &
                    - cosLambda(k,i)*CosPhi0(k)*CosInc 
     dbeta(k,i,1) = dbeta(k,i,1)/sinbeta(k,i)
     ! wrt Peq (2nd star parameter)
     dbeta(k,i,2) = CosPhi0(k)*sinLambda(k,i)*SinInc/sinbeta(k,i)
     dbeta(k,i,2) = dbeta(k,i,2)*2.0D0*pi*(t(i)-tref(k))/(Theta(2)) ! Temporary
     ! wrt kappa2 (3rd star parameter)
     dbeta(k,i,3) = -dbeta(k,i,2)*SinPhi0(k)**2
     ! wrt kappa4 (4th star parameter)
     dbeta(k,i,4) = -dbeta(k,i,2)*SinPhi0(k)**4
     ! wrt Peq continued
     dbeta(k,i,2) = -dbeta(k,i,2)/Prot(k)
   END DO
 END DO

 ! Spot-derivatives of beta
 DO i=1,ndata
   DO k=1,Nspot
     ! wrt Lambda [1st spot parameter]
     dbeta(k,i,pstar+pspot*(k-1)+1) = SinInc*CosPhi0(k)*&
                                      sinLambda(k,i)/sinbeta(k,i)
     ! wrt Phi0 [2nd spot parameter]
     dbeta(k,i,pstar+pspot*(k-1)+2) = 2.0D0*Theta(3)*CosPhi0(k)**2 &
                                      +Theta(4)*(2.0D0*SinPhi0(k)*CosPhi0(k))**2
     dbeta(k,i,pstar+pspot*(k-1)+2) = dbeta(k,i,pstar+pspot*(k-1)+2)*2.0D0*pi*&
                                      (t(i)-tref(k))/Theta(2)
     dbeta(k,i,pstar+pspot*(k-1)+2) = cosLambda(k,i) &
                                      - dbeta(k,i,pstar+pspot*(k-1)+2)
     dbeta(k,i,pstar+pspot*(k-1)+2) = dbeta(k,i,pstar+pspot*(k-1)+2)*&
                                      SinInc*SinPhi0(k)/sinbeta(k,i)
   END DO
 END DO

 ! ================================
 ! === SECTION 6: A DERIVATIVES ===
 ! ================================

 ! Semi-derivatives of A
 DO i=1,ndata
   DO k=1,Nspot
     IF( alpha(k,i) .GT. tol ) THEN
       IF( beta(k,i) .GT. (halfpi+alpha(k,i)) ) THEN
         ! Case IV
         A(k,i) = 0.0D0
       ELSE IF( beta(k,i) .LT. (halfpi-alpha(k,i)) ) THEN
         ! Case I
         dAda(k,i) = 2.0D0*pi*cosbeta(k,i)*sinalpha(k,i)*cosalpha(k,i)
         dAdb(k,i) = -pi*sinalpha(k,i)**2*sinbeta(k,i)
       ELSE
         ! Case II & III
         epsil(k,i) = 2.0D0*( cosalpha(k,i)**2 + cosbeta(k,i)**2 - 1.0D0 )/( &
                        sinbeta(k,i)**2*Psi(k,i) )
         dAda(k,i) = -sinalpha(k,i)*sinbeta(k,i)*epsil(k,i) &
                     +2.0D0*cosalpha(k,i)*cosbeta(k,i)*Xi(k,i)
         dAdb(k,i) = 0.5D0*cosalpha(k,i)*cosbeta(k,i)*epsil(k,i) &
                     - sinalpha(k,i)*sinbeta(k,i)*Xi(k,i)
       END IF
     ELSE
       A(k,i) = 0.0D0
     END IF
   END DO
 END DO

 ! Derivatives of A
 DO j=1,jmax
   DO i=1,ndata
     DO k=1,Nspot
       dA(k,i,j) = dAda(k,i)*dalpha(k,i,j) + dAdb(k,i)*dbeta(k,i,j)
     END DO
   END DO
 END DO

 ! ====================================
 ! === SECTION 7: FINAL DERIVATIVES ===
 ! ====================================

 ! Derivatives of zeta wrt alpha (and implicitly beta)
 DO j=1,jmax
   DO i=1,ndata
     DO k=1,Nspot
       ! dzetanegda
       IF( (beta(k,i)-alpha(k,i)) .LT. halfpi .AND. &
           (beta(k,i)-alpha(k,i)) .GT. 0.0D0 ) THEN
         dzetanegda(k,i) = cosalpha(k,i)*sinbeta(k,i) &
                           - cosbeta(k,i)*sinalpha(k,i)
       ELSE
         dzetanegda(k,i) = 0.0D0
       END IF
       ! dzetaposda
       IF( (beta(k,i)+alpha(k,i)) .LT. halfpi .AND. &
           (beta(k,i)+alpha(k,i)) .GT. 0.0D0 ) THEN
         dzetaposda(k,i) = -cosalpha(k,i)*sinbeta(k,i) &
                           - cosbeta(k,i)*sinalpha(k,i)
       ELSE
         dzetaposda(k,i) = 0.0D0
       END IF
     END DO
   END DO
 END DO

 ! Derivatives of zeta
 DO j=1,jmax
   DO i=1,ndata
     DO k=1,Nspot
       dzetaneg(k,i,j) = dzetanegda(k,i)*( dalpha(k,i,j) - dbeta(k,i,j) )
       dzetapos(k,i,j) = dzetaposda(k,i)*( dalpha(k,i,j) + dbeta(k,i,j) )
     END DO
   END DO
 END DO

 ! Derivatives of Upsilon
 DO j=1,jmax
   DO i=1,ndata
     DO k=1,Nspot
       DO n=0,4
         dUpsilon(n+1,k,i,j) = DSQRT( zetaneg(k,i)**(n+2) )*dzetaneg(k,i,j) &
                           - DSQRT( zetapos(k,i)**(n+2) )*dzetapos(k,i,j)
         dUpsilon(n+1,k,i,j) = 0.5D0*(n+4.0D0)*dUpsilon(n+1,k,i,j) &
                               - 2.0D0*Upsilon(n+1,k,i)*&
                               ( dzetaneg(k,i,j)-dzetapos(k,i,j) )
         dUpsilon(n+1,k,i,j) = dUpsilon(n+1,k,i,j)/( zetaneg(k,i)**2 &
                               - zetapos(k,i)**2 &
                               + kronecker(zetapos(k,i),zetaneg(k,i)) )
       END DO
    END DO
   END DO
 END DO

 ! Derivatives of w
 DO j=1,jmax
   DO i=1,ndata
     DO k=1,Nspot
       DO n=0,4
         dw(n+1,k,i,j) = Upsilon(n+1,k,i)*dc(n+1,j) + (c(n+1)-d(n+1)*fspot(k))*&
                         dUpsilon(n+1,k,i,j) - d(n+1)*Upsilon(n+1,k,i)*&
                         dfspot(k,j) - fspot(k)*Upsilon(n+1,k,i)*dd(n+1,j)
         dw(n+1,k,i,j) = (4.0D0*dw(n+1,k,i,j))/(n+4.0D0)
       END DO
     END DO
   END DO
 END DO

 ! Derivatives of q
 DO j=1,jmax
   DO i=1,ndata
     DO k=1,Nspot
       dq(k,i,j) = ( A(k,i)*SUM(dw(:,k,i,j)) + dA(k,i,j)*SUM(w(:,k,i)) )*piI
     END DO
   END DO
 END DO

 ! Derivatives of Fab
 DO j=1,jmax
   DO i=1,ndata
     dFab(i,j) = dFab0(j) - SUM(dq(:,i,j))
   END DO
 END DO

 ! Derivatives of Fab0
 dFab0(:) = 0.0D0               ! wrt everything else
 dFab0(5) = -0.2D0		! wrt c1
 dFab0(6) = -0.33333333D0	! wrt c2
 dFab0(7) = -0.42857143D0	! wrt c3
 dFab0(8) = -0.5D0 		! wrt c4

 ! Derivatives of Ftilde
 DO j=1,jmax
   DO i=1,ndata
     DO m=1,mmax
       dFtilde(m,i,j) = Fab0*B(m)*(Fab(i)+Fab0*(B(m)-1.0D0))*dU(m,j) &
                        + U(m)*( B(m)*Fab0*dFab(i,j) - B(m)*Fab(i)*dFab0(j) &
		        + Fab0*(Fab0-Fab(i))*dB(m,j) )
       dFtilde(m,i,j) = ( Box(m,i)/(Fab0**2*B(m)**2) )*dFtilde(m,i,j)
     END DO
   END DO
 END DO

 ! Derivatives of Fmod
 DO j=1,jmax
   DO i=1,ndata
     dFmod(i,j) = SUM(dFtilde(:,i,j))
   END DO
 END DO

 ! =======================================
 ! === SECTION 8: TEMPORAL DERIVATIVES ===
 ! =======================================

 IF( temporal ) THEN

 ! Temporal derivatives of alpha and beta
 DO i=1,ndata
   DO k=1,Nspot
     IF( t(i) .LT. tcrit2(k) .AND. t(i) .GT. tcrit1(k) ) THEN
       dalphadt(k,i) = (alphamax(k)/ingress(k))
     ELSE IF( t(i) .LT. tcrit4(k) .AND. t(i) .GT. tcrit3(k) ) THEN
       dalphadt(k,i) = -(alphamax(k)/egress(k))
     ELSE
       dalphadt(k,i) = 0.0D0
     END IF
     dbetadt(k,i) = 1.0D0 - ( SinInc*CosPhi0(k)*cosLambda(k,i) + &
                    CosInc*SinPhi0(k) )**2
     dbetadt(k,i) = (2.0D0*pi*SinInc*CosPhi0(k)*sinLambda(k,i) )/&
                    ( Prot(k)*DSQRT(dbetadt(k,i)) )
   END DO
 END DO

 ! Temporal derivatives of zeta
 DO i=1,ndata
   DO k=1,Nspot
     dzetanegdt(k,i) = dzetanegda(k,i)*( dalphadt(k,i) - dbetadt(k,i) )
     dzetaposdt(k,i) = dzetaposda(k,i)*( dalphadt(k,i) + dbetadt(k,i) )
   END DO
 END DO

 ! Temporal derivatives of Upsilon
 DO i=1,ndata
   DO k=1,Nspot
     DO n=0,4
       dUpsilondt(n+1,k,i) = DSQRT( zetaneg(k,i)**(n+2) )*dzetanegdt(k,i) &
                         - DSQRT( zetapos(k,i)**(n+2) )*dzetaposdt(k,i)
       dUpsilondt(n+1,k,i) = 0.5D0*(n+4.0D0)*dUpsilondt(n+1,k,i) &
                             - 2.0D0*Upsilon(n+1,k,i)*&
                             ( dzetanegdt(k,i)-dzetaposdt(k,i) )
       dUpsilondt(n+1,k,i) = dUpsilondt(n+1,k,i)/( zetaneg(k,i)**2 &
                             - zetapos(k,i)**2 &
                             + kronecker(zetapos(k,i),zetaneg(k,i)) )
     END DO
   END DO
 END DO

 ! Temporal derivatives of w
 DO i=1,ndata
   DO k=1,Nspot
     DO n=0,4
       dwdt(n+1,k,i) = dUpsilondt(n+1,k,i)*&
                       ( ( 4.0D0*( c(n+1) - d(n+1)*fspot(k) ) )/(n+4.0D0) )
     END DO
   END DO
 END DO

 ! Temporal derivatives of A
 DO i=1,ndata
   DO k=1,Nspot
     dAdt(k,i) = dAda(k,i)*dalphadt(k,i) + dAdb(k,i)*dbetadt(k,i)
   END DO
 END DO

 ! Temporal derivatives of q
 DO i=1,ndata
   DO k=1,Nspot
     dqdt(k,i) = ( A(k,i)*SUM(dwdt(:,k,i)) + dAdt(k,i)*SUM(w(:,k,i)) )*piI
   END DO
 END DO

 ! Temporal derivatives of Fab
 DO i=1,ndata
   dFabdt(i) = - SUM(dqdt(:,i))
 END DO

 ! Temporal derivatives of Ftilde
 DO i=1,ndata
   DO m=1,mmax
     dFtildedt(m,i) = ( (U(m)*Box(m,i))/(B(m)*Fab0) )*dFabdt(i)
   END DO
 END DO

 ! Temporal derivatives of Fmod
 DO i=1,ndata
   dFmoddt(i) = SUM(dFtildedt(:,i))
 END DO

 ELSE
   dFmoddt(:) = 0.0D0
 END IF

 ! =======================================
 ! === SECTION 9: RE-SPLIT DERIVATIVES ===
 ! =======================================

 ! Derivatives provided for Theta_star, Theta_inst, Theta_spot discretely
 l=0
 DO j=1,pstar
   l = l + 1
   dFmod_star(:,j) = dFmod(:,l)
 END DO
 DO k=1,Nspot
   DO j=1,pspot
     l = l + 1
     dFmod_spot(:,j,k) = dFmod(:,l)
   END DO
 END DO
 DO m=1,mmax
   DO j=1,pinst
     l = l + 1
     dFmod_inst(:,j,m) = dFmod(:,l)
   END DO
 END DO
 
 ! Master if-loop
 ELSE
   dFmod_star(:,:)   = 0.0D0
   dFmod_spot(:,:,:) = 0.0D0
   dFmod_inst(:,:,:) = 0.0D0
   dFmoddt(:) = 0.0D0
 END IF

END SUBROUTINE macula
! ==============================================================================

! ==============================================================================
! ================================= FUNCTION: ZETA =============================
! ==============================================================================
REAL(8) FUNCTION zeta(x)

implicit none

 REAL(8), INTENT(IN) :: x
 REAL(8), PARAMETER :: halfpi = 1.5707963267948966D0

 IF( x .LT. 0.0D0 ) THEN
   zeta = 1.0D0
 ELSE IF( x .GT. halfpi ) THEN
   zeta = 0.0D0
 ELSE !IF( x .GE. 0.0D0 .AND. x .LE. halfpi ) THEN
   zeta = DCOS(x)
 END IF

 END FUNCTION zeta
! ==============================================================================

! ==============================================================================
! =========================== FUNCTION: KRONECKER ==============================
! ==============================================================================
REAL(8) FUNCTION kronecker(x,y)

implicit none

 REAL(8), INTENT(IN) :: x, y

 IF( x .EQ. y ) THEN
   kronecker = 1.0D0
 ELSE
  kronecker = 0.0D0
 END IF

 END FUNCTION kronecker
! ==============================================================================

END MODULE maculamod


  File "<ipython-input-3-270803f87ee8>", line 90
    MODULE maculamod
                   ^
SyntaxError: invalid syntax

In [4]:
f2py -c macula.f90 -m pymacula


  File "<ipython-input-4-63671c209604>", line 1
    f2py -c macula.f90 -m pymacula
                 ^
SyntaxError: invalid syntax

In [2]:
import pymacula

times = np.array(1000)
derivatives = true
temporal = true
tdeltav = true
t_start = 0
t_stop = 999

output = pymacula.maculamod.macula(times,derivatives,temporal,tdeltav,theta_star,theta_spot,theta_inst,t_start,t_stop)

Fmod = output[0]
dFmod_star = output[1]
dFmod_spot = output[2]
dFmod_inst = output[3]
dFmoddt = output[4]
deltaratio = output[5]


---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-2-5f0574103481> in <module>()
----> 1 import pymacula
      2 
      3 times = np.array(1000)
      4 derivatives = true
      5 temporal = true

ImportError: No module named pymacula

In [ ]: