In [1]:
from sklearn.datasets import fetch_olivetti_faces
faces = fetch_olivetti_faces()
In [2]:
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(faces.data, faces.target, test_size=0.25, random_state=0)
In [4]:
from sklearn.svm import SVC
svc = SVC(kernel='linear').fit(X_train, y_train)
In [10]:
from sklearn.metrics import precision_score
from sklearn.metrics import classification_report
print(precision_score(y_test, svc.predict(X_test), average="micro"))
print(classification_report(y_test, svc.predict(X_test)))
In [16]:
k = 5
plt.imshow(X_test[k:(k+1), :].reshape(64,64), cmap=plt.cm.bone)
plt.grid(False)
y_test[5], svc.predict(X_test[5])
Out[16]:
In [ ]: