Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [7]:
# data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [8]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[8]:
<matplotlib.image.AxesImage at 0x7f4786781400>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [9]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[9]:
<matplotlib.image.AxesImage at 0x7f47866e5c88>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [10]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.1.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [11]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function

    inputs_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='input_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    lr = tf.placeholder(tf.float32, (None), name='learning_rate')

    
    return inputs_real, inputs_z, lr


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [14]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function

    with tf.variable_scope('discriminator', reuse=reuse):
        alpha = .2
        keep_prob = .8
        
        x1 = tf.layers.conv2d(images, 64, 5, 
                              strides=2, padding='same', kernel_initializer=tf.contrib.layers.xavier_initializer())
        relu1 = tf.maximum(alpha * x1, x1)
        relu1 = tf.nn.dropout(relu1, keep_prob)
       
        
        x2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same', kernel_initializer=tf.contrib.layers.xavier_initializer())
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)
        relu2 = tf.nn.dropout(relu2, keep_prob)
        
        x3 = tf.layers.conv2d(relu2, 256, 5, strides=2, padding='same', kernel_initializer=tf.contrib.layers.xavier_initializer())
        bn3 = tf.layers.batch_normalization(x3, training=True)
        relu3 = tf.maximum(alpha * bn3, bn3)
        relu3 = tf.nn.dropout(relu3, keep_prob)

        # Flatten it
        flat = tf.reshape(relu3, (-1, 4*4*256))
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)
        
        return out, logits

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [15]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    if is_train:
        reuse = False
    else:
        reuse = True
    
    with tf.variable_scope('generator', reuse=reuse):
        alpha = .2
        keep_prob  = .2
        # First fully connected layer
        x1 = tf.layers.dense(z, 4*4*512)
        
        x1 = tf.reshape(x1, (-1, 4, 4, 512))
        x1 = tf.layers.batch_normalization(x1, training=is_train)
        x1 = tf.maximum(alpha * x1, x1)
        
        x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same', kernel_initializer=tf.contrib.layers.xavier_initializer())
        x2 = tf.layers.batch_normalization(x2, training=is_train)
        x2 = tf.maximum(alpha * x2, x2)
        x2 = tf.nn.dropout(x2, keep_prob)
        
        x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same', kernel_initializer=tf.contrib.layers.xavier_initializer())
        x3 = tf.layers.batch_normalization(x3, training=is_train)
        x3 = tf.maximum(alpha * x3, x3)
        x3 = tf.nn.dropout(x3, keep_prob)
        
        # Output layer
        x4 = tf.layers.conv2d_transpose(x3, out_channel_dim, 5, strides=2, padding='same')
        logits = tf.image.resize_images(x4, [28,28])
        out = tf.tanh(logits)
        return out   

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [17]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    alpha = .2
    smooth = .1
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real) * (1 - smooth)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [19]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    
    # Get weights and bias to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [20]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [21]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model
    
    input_real, input_z, l = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim)
    d_loss, g_loss = model_loss(input_real, input_z, data_shape[3])
    d_opt, g_opt = model_opt(d_loss, g_loss, learning_rate, beta1)

    n_images = 17 
    print_every = 50
    show_every = 150
    
    sample_z = np.random.uniform(-1, 1, size=(9, z_dim))
    samples, losses = [], []
    
    steps = 0
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                # TODO: Train Model
                steps += 1
                batch_images = batch_images * 2
                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))

                # Run optimizers
                _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z})
                _ = sess.run(g_opt, feed_dict={input_z: batch_z, input_real: batch_images})

                if steps % print_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})

                    print("Epoch {}/{}...".format(epoch_i+1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_g))

                if steps % show_every == 0:
                    gen_samples = sess.run(
                                   generator(input_z, data_shape[3], is_train=False),
                                   feed_dict={input_z: sample_z})
                    samples.append(gen_samples)
                    show_generator_output(sess, n_images, input_z, data_shape[3], data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [ ]:
batch_size = 64
z_dim = 100
learning_rate = 0.0002
beta1 = 0.4


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2... Discriminator Loss: 0.5493... Generator Loss: 2.6212
Epoch 1/2... Discriminator Loss: 0.6270... Generator Loss: 2.3879
Epoch 1/2... Discriminator Loss: 0.6960... Generator Loss: 2.2774
Epoch 1/2... Discriminator Loss: 0.6227... Generator Loss: 2.5556
Epoch 1/2... Discriminator Loss: 0.8372... Generator Loss: 1.8789
Epoch 1/2... Discriminator Loss: 0.7388... Generator Loss: 2.4132
Epoch 1/2... Discriminator Loss: 0.7684... Generator Loss: 2.1119
Epoch 1/2... Discriminator Loss: 0.6715... Generator Loss: 1.6994
Epoch 1/2... Discriminator Loss: 0.6298... Generator Loss: 2.4305
Epoch 1/2... Discriminator Loss: 0.7300... Generator Loss: 1.7495
Epoch 1/2... Discriminator Loss: 0.8413... Generator Loss: 1.2006
Epoch 1/2... Discriminator Loss: 0.6402... Generator Loss: 1.9883
Epoch 1/2... Discriminator Loss: 0.6451... Generator Loss: 2.0424
Epoch 1/2... Discriminator Loss: 0.7196... Generator Loss: 3.3255
Epoch 1/2... Discriminator Loss: 0.6438... Generator Loss: 2.2136
Epoch 1/2... Discriminator Loss: 0.8677... Generator Loss: 3.8483
Epoch 1/2... Discriminator Loss: 0.6084... Generator Loss: 2.8215
Epoch 1/2... Discriminator Loss: 0.8338... Generator Loss: 1.2733
Epoch 2/2... Discriminator Loss: 0.6676... Generator Loss: 1.8856
Epoch 2/2... Discriminator Loss: 0.6512... Generator Loss: 2.1702
Epoch 2/2... Discriminator Loss: 0.9466... Generator Loss: 0.9914
Epoch 2/2... Discriminator Loss: 0.7197... Generator Loss: 2.1626
Epoch 2/2... Discriminator Loss: 0.9187... Generator Loss: 1.3353
Epoch 2/2... Discriminator Loss: 0.6028... Generator Loss: 2.5480
Epoch 2/2... Discriminator Loss: 0.6425... Generator Loss: 2.9797
Epoch 2/2... Discriminator Loss: 0.6515... Generator Loss: 1.5922
Epoch 2/2... Discriminator Loss: 0.5813... Generator Loss: 2.4475
Epoch 2/2... Discriminator Loss: 0.7491... Generator Loss: 1.5768
Epoch 2/2... Discriminator Loss: 0.6850... Generator Loss: 2.2780
Epoch 2/2... Discriminator Loss: 0.7339... Generator Loss: 3.5284
Epoch 2/2... Discriminator Loss: 0.8576... Generator Loss: 2.0019
Epoch 2/2... Discriminator Loss: 0.9649... Generator Loss: 3.6735
Epoch 2/2... Discriminator Loss: 0.6518... Generator Loss: 3.0221
Epoch 2/2... Discriminator Loss: 0.5387... Generator Loss: 2.5150
Epoch 2/2... Discriminator Loss: 0.6834... Generator Loss: 2.4527
Epoch 2/2... Discriminator Loss: 0.7046... Generator Loss: 1.9568
Epoch 2/2... Discriminator Loss: 0.5880... Generator Loss: 2.4974

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [ ]:
batch_size = 32
z_dim = 90
learning_rate = 0.0002
beta1 = 0.4


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1... Discriminator Loss: 0.4364... Generator Loss: 4.8018
Epoch 1/1... Discriminator Loss: 0.5074... Generator Loss: 3.2894
Epoch 1/1... Discriminator Loss: 0.5052... Generator Loss: 3.2823
Epoch 1/1... Discriminator Loss: 0.3860... Generator Loss: 4.5831
Epoch 1/1... Discriminator Loss: 0.3895... Generator Loss: 3.9556
Epoch 1/1... Discriminator Loss: 0.4468... Generator Loss: 3.4063
Epoch 1/1... Discriminator Loss: 0.5230... Generator Loss: 2.5699
Epoch 1/1... Discriminator Loss: 2.8660... Generator Loss: 0.2622
Epoch 1/1... Discriminator Loss: 0.4381... Generator Loss: 3.9729
Epoch 1/1... Discriminator Loss: 0.5986... Generator Loss: 1.7121
Epoch 1/1... Discriminator Loss: 0.5599... Generator Loss: 2.2717
Epoch 1/1... Discriminator Loss: 0.6483... Generator Loss: 2.4488
Epoch 1/1... Discriminator Loss: 0.4770... Generator Loss: 2.9694
Epoch 1/1... Discriminator Loss: 0.6907... Generator Loss: 1.8403
Epoch 1/1... Discriminator Loss: 0.6574... Generator Loss: 3.2523
Epoch 1/1... Discriminator Loss: 0.5473... Generator Loss: 3.1618
Epoch 1/1... Discriminator Loss: 0.7298... Generator Loss: 1.5773
Epoch 1/1... Discriminator Loss: 0.6133... Generator Loss: 2.6512
Epoch 1/1... Discriminator Loss: 0.5703... Generator Loss: 2.9955
Epoch 1/1... Discriminator Loss: 0.7636... Generator Loss: 2.4095
Epoch 1/1... Discriminator Loss: 0.5536... Generator Loss: 2.1781
Epoch 1/1... Discriminator Loss: 0.5974... Generator Loss: 1.8780
Epoch 1/1... Discriminator Loss: 0.6411... Generator Loss: 2.7798
Epoch 1/1... Discriminator Loss: 0.5564... Generator Loss: 2.6200
Epoch 1/1... Discriminator Loss: 0.4959... Generator Loss: 2.6413
Epoch 1/1... Discriminator Loss: 0.5937... Generator Loss: 2.5667
Epoch 1/1... Discriminator Loss: 0.7786... Generator Loss: 2.4484
Epoch 1/1... Discriminator Loss: 0.6028... Generator Loss: 2.7159
Epoch 1/1... Discriminator Loss: 0.6993... Generator Loss: 2.0003
Epoch 1/1... Discriminator Loss: 0.7674... Generator Loss: 3.0229
Epoch 1/1... Discriminator Loss: 0.5854... Generator Loss: 2.0491
Epoch 1/1... Discriminator Loss: 0.6571... Generator Loss: 1.9435
Epoch 1/1... Discriminator Loss: 0.7330... Generator Loss: 1.5278
Epoch 1/1... Discriminator Loss: 1.1821... Generator Loss: 1.3302
Epoch 1/1... Discriminator Loss: 0.6797... Generator Loss: 2.3402
Epoch 1/1... Discriminator Loss: 0.5334... Generator Loss: 2.2952
Epoch 1/1... Discriminator Loss: 0.7803... Generator Loss: 1.9532
Epoch 1/1... Discriminator Loss: 0.8611... Generator Loss: 1.3147
Epoch 1/1... Discriminator Loss: 0.5735... Generator Loss: 1.9286
Epoch 1/1... Discriminator Loss: 0.5836... Generator Loss: 2.1716
Epoch 1/1... Discriminator Loss: 0.6413... Generator Loss: 3.3895
Epoch 1/1... Discriminator Loss: 0.5036... Generator Loss: 2.5216
Epoch 1/1... Discriminator Loss: 0.7608... Generator Loss: 1.9618
Epoch 1/1... Discriminator Loss: 0.6104... Generator Loss: 2.2454
Epoch 1/1... Discriminator Loss: 1.4534... Generator Loss: 0.6956
Epoch 1/1... Discriminator Loss: 0.5469... Generator Loss: 3.9363
Epoch 1/1... Discriminator Loss: 0.8253... Generator Loss: 1.6041
Epoch 1/1... Discriminator Loss: 0.6262... Generator Loss: 2.1586
Epoch 1/1... Discriminator Loss: 0.6424... Generator Loss: 2.3553
Epoch 1/1... Discriminator Loss: 0.6891... Generator Loss: 2.1638
Epoch 1/1... Discriminator Loss: 0.5146... Generator Loss: 2.4595
Epoch 1/1... Discriminator Loss: 0.6823... Generator Loss: 1.5505
Epoch 1/1... Discriminator Loss: 0.8314... Generator Loss: 2.4799
Epoch 1/1... Discriminator Loss: 0.9230... Generator Loss: 3.9659
Epoch 1/1... Discriminator Loss: 0.6934... Generator Loss: 4.1301
Epoch 1/1... Discriminator Loss: 0.6768... Generator Loss: 2.0157
Epoch 1/1... Discriminator Loss: 0.5727... Generator Loss: 2.5733
Epoch 1/1... Discriminator Loss: 0.7133... Generator Loss: 1.5012
Epoch 1/1... Discriminator Loss: 0.7260... Generator Loss: 2.0420
Epoch 1/1... Discriminator Loss: 0.7761... Generator Loss: 1.5432
Epoch 1/1... Discriminator Loss: 0.5807... Generator Loss: 2.6414
Epoch 1/1... Discriminator Loss: 0.5787... Generator Loss: 1.7875
Epoch 1/1... Discriminator Loss: 0.8022... Generator Loss: 2.0597
Epoch 1/1... Discriminator Loss: 0.5668... Generator Loss: 2.4918
Epoch 1/1... Discriminator Loss: 1.2347... Generator Loss: 1.2503
Epoch 1/1... Discriminator Loss: 0.6402... Generator Loss: 2.3419
Epoch 1/1... Discriminator Loss: 0.6043... Generator Loss: 3.4564
Epoch 1/1... Discriminator Loss: 0.5769... Generator Loss: 2.6890
Epoch 1/1... Discriminator Loss: 0.4666... Generator Loss: 3.1875
Epoch 1/1... Discriminator Loss: 0.4793... Generator Loss: 3.3312
Epoch 1/1... Discriminator Loss: 0.9584... Generator Loss: 1.4439
Epoch 1/1... Discriminator Loss: 0.4989... Generator Loss: 2.5925
Epoch 1/1... Discriminator Loss: 0.9043... Generator Loss: 1.4916
Epoch 1/1... Discriminator Loss: 0.7629... Generator Loss: 4.1450
Epoch 1/1... Discriminator Loss: 0.6093... Generator Loss: 2.3302
Epoch 1/1... Discriminator Loss: 0.5217... Generator Loss: 2.5117
Epoch 1/1... Discriminator Loss: 0.6508... Generator Loss: 2.5202
Epoch 1/1... Discriminator Loss: 0.7398... Generator Loss: 1.7917
Epoch 1/1... Discriminator Loss: 0.5524... Generator Loss: 2.7325
Epoch 1/1... Discriminator Loss: 0.5511... Generator Loss: 2.0410
Epoch 1/1... Discriminator Loss: 0.4620... Generator Loss: 3.2900
Epoch 1/1... Discriminator Loss: 0.5577... Generator Loss: 2.6309
Epoch 1/1... Discriminator Loss: 0.6699... Generator Loss: 2.5240
Epoch 1/1... Discriminator Loss: 0.5743... Generator Loss: 3.0225
Epoch 1/1... Discriminator Loss: 0.4751... Generator Loss: 2.2461
Epoch 1/1... Discriminator Loss: 0.4348... Generator Loss: 3.1780
Epoch 1/1... Discriminator Loss: 0.5560... Generator Loss: 2.2948
Epoch 1/1... Discriminator Loss: 0.5373... Generator Loss: 2.0920
Epoch 1/1... Discriminator Loss: 0.4292... Generator Loss: 4.0428
Epoch 1/1... Discriminator Loss: 0.5001... Generator Loss: 3.0269
Epoch 1/1... Discriminator Loss: 0.6978... Generator Loss: 2.3612
Epoch 1/1... Discriminator Loss: 0.4530... Generator Loss: 3.1996
Epoch 1/1... Discriminator Loss: 0.4709... Generator Loss: 2.9624
Epoch 1/1... Discriminator Loss: 0.5330... Generator Loss: 2.9085
Epoch 1/1... Discriminator Loss: 0.5974... Generator Loss: 2.7001
Epoch 1/1... Discriminator Loss: 0.6086... Generator Loss: 4.0366
Epoch 1/1... Discriminator Loss: 0.5018... Generator Loss: 3.0759
Epoch 1/1... Discriminator Loss: 0.7113... Generator Loss: 4.1723
Epoch 1/1... Discriminator Loss: 0.3997... Generator Loss: 3.3962
Epoch 1/1... Discriminator Loss: 0.5883... Generator Loss: 3.0301
Epoch 1/1... Discriminator Loss: 0.4849... Generator Loss: 3.1846
Epoch 1/1... Discriminator Loss: 0.4754... Generator Loss: 3.1465
Epoch 1/1... Discriminator Loss: 0.5679... Generator Loss: 3.6690
Epoch 1/1... Discriminator Loss: 0.6401... Generator Loss: 3.8003
Epoch 1/1... Discriminator Loss: 0.5353... Generator Loss: 2.2739
Epoch 1/1... Discriminator Loss: 0.5103... Generator Loss: 3.3464
Epoch 1/1... Discriminator Loss: 0.5497... Generator Loss: 3.5167
Epoch 1/1... Discriminator Loss: 0.4723... Generator Loss: 2.5750
Epoch 1/1... Discriminator Loss: 0.5906... Generator Loss: 2.9310
Epoch 1/1... Discriminator Loss: 0.4486... Generator Loss: 2.6871
Epoch 1/1... Discriminator Loss: 0.4495... Generator Loss: 3.5248
Epoch 1/1... Discriminator Loss: 0.7118... Generator Loss: 2.4802
Epoch 1/1... Discriminator Loss: 0.5766... Generator Loss: 3.5567
Epoch 1/1... Discriminator Loss: 0.5093... Generator Loss: 2.4659
Epoch 1/1... Discriminator Loss: 0.5966... Generator Loss: 3.8221
Epoch 1/1... Discriminator Loss: 0.7743... Generator Loss: 2.0372
Epoch 1/1... Discriminator Loss: 0.4848... Generator Loss: 3.1057
Epoch 1/1... Discriminator Loss: 0.5667... Generator Loss: 4.2896
Epoch 1/1... Discriminator Loss: 0.5790... Generator Loss: 3.2370
Epoch 1/1... Discriminator Loss: 0.7120... Generator Loss: 2.2140
Epoch 1/1... Discriminator Loss: 0.5191... Generator Loss: 2.5454
Epoch 1/1... Discriminator Loss: 0.4929... Generator Loss: 2.4106
Epoch 1/1... Discriminator Loss: 0.5874... Generator Loss: 2.4077
Epoch 1/1... Discriminator Loss: 0.5160... Generator Loss: 2.3895
Epoch 1/1... Discriminator Loss: 0.4948... Generator Loss: 2.7003
Epoch 1/1... Discriminator Loss: 0.6621... Generator Loss: 2.0462

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.