In [1]:
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
In [2]:
mnist = input_data.read_data_sets('data/mnist', one_hot=True)
In [12]:
# 参数
lr = .001
batch_size = 128
n_epochs = 30
X = tf.placeholder(tf.float32, [None, 784], name='X')
Y = tf.placeholder(tf.int32, [None, 10], name='Y')
w = tf.Variable(tf.random_normal([784, 10], stddev=.01), name='weights')
b = tf.Variable(tf.zeros([10]), name='bias')
logits = tf.matmul(X, w) + b
entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y, name='loss')
loss = tf.reduce_mean(entropy)
optimizer = tf.train.AdadeltaOptimizer(lr).minimize(loss)
In [ ]:
In [ ]: