In [2]:
import graphlab
In [3]:
sales = graphlab.SFrame('home_data.gl/')
In [4]:
graphlab.canvas.set_target('ipynb')
sales.show(view="Scatter Plot", x="sqft_living", y="price")
In [22]:
train_data, test_data = sales.random_split(.8, seed=0)
In [23]:
sqft_model = graphlab.linear_regression.create(train_data, target='price', features=['sqft_living'])
In [24]:
print sqft_model.evaluate(test_data)
In [25]:
import matplotlib.pyplot as plt
%matplotlib inline
In [26]:
plt.plot(test_data['sqft_living'], test_data['price'], '.', test_data['sqft_living'], sqft_model.predict(test_data), '-')
Out[26]:
In [27]:
print sqft_model.get('coefficients')
In [33]:
my_features = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'zipcode']
In [34]:
sales[my_features].show()
In [36]:
my_features_model = graphlab.linear_regression.create(train_data, target='price', features=my_features)
In [37]:
print my_features_model.evaluate(test_data)