In [1]:
def f1(precision,recall):
if precision == 0.0 and recall == 0.0:
return 0.0
else:
return 2 * float(precision)* float(recall) / ( precision+recall )
In [2]:
f1(0.31,0.76)
Out[2]:
In [3]:
f1(0.64,0.38)
Out[3]:
In [4]:
f1(0.39,0.16)
Out[4]:
In [5]:
f1(0.22,0.18)
Out[5]:
In [6]:
f1(0.11,0.39)
Out[6]:
In [11]:
f1(0.0,0)
In [ ]:
import numpy as np
In [ ]:
lst = []
In [ ]:
lst.append(np.array([1,2,3]))
In [ ]:
lst.append(np.array([4,4,4]))
In [ ]:
matrix = np.vstack(lst)
In [ ]:
matrix
In [ ]:
matrix.sum(axis=1)
In [ ]:
arr = np.array([1,2,3]).reshape(1,-1)
In [ ]:
np.sum(arr,axis=1)
In [ ]:
np.argsort(arr,axis=1)
In [ ]:
np.array([1,1]).shape
In [ ]:
original_y_true = np.array([[0.,1.],[1.,1.]]);original_y_true
In [ ]:
original_y_true.shape
In [ ]:
original_y_score = np.array([[0.,0.4],[0.9,0.1]]);original_y_score
In [ ]:
score_indices_top_k = np.array([[0,0],[0,0]]);score_indices_top_k
In [ ]:
row_indices_to_select = [i for i in range(original_y_true.shape[0])];row_indices_to_select
In [ ]:
column_indices_to_select = score_indices_top_k.T
In [ ]:
out = original_y_true[row_indices_to_select,column_indices_to_select];out
In [ ]:
out.shape
In [ ]:
arr1 = np.array([[0.5]])
In [ ]:
arr2 = np.array([[1.0]])
In [ ]:
lst = []
lst.append(arr1)
lst.append(arr2)
In [ ]:
np.vstack(lst)
In [ ]: