Train on 60000 samples, validate on 10000 samples
Epoch 1/12
60000/60000 [==============================] - 16s - loss: 0.3142 - acc: 0.9048 - val_loss: 0.0744 - val_acc: 0.9758
Epoch 2/12
60000/60000 [==============================] - 16s - loss: 0.1084 - acc: 0.9682 - val_loss: 0.0494 - val_acc: 0.9841
Epoch 3/12
60000/60000 [==============================] - 16s - loss: 0.0852 - acc: 0.9751 - val_loss: 0.0435 - val_acc: 0.9856
Epoch 4/12
60000/60000 [==============================] - 17s - loss: 0.0682 - acc: 0.9798 - val_loss: 0.0388 - val_acc: 0.9867
Epoch 5/12
60000/60000 [==============================] - 16s - loss: 0.0606 - acc: 0.9824 - val_loss: 0.0347 - val_acc: 0.9884
Epoch 6/12
60000/60000 [==============================] - 16s - loss: 0.0540 - acc: 0.9840 - val_loss: 0.0327 - val_acc: 0.9893
Epoch 7/12
60000/60000 [==============================] - 16s - loss: 0.0504 - acc: 0.9849 - val_loss: 0.0325 - val_acc: 0.9884
Epoch 8/12
60000/60000 [==============================] - 16s - loss: 0.0462 - acc: 0.9863 - val_loss: 0.0325 - val_acc: 0.9890
Epoch 9/12
60000/60000 [==============================] - 17s - loss: 0.0429 - acc: 0.9870 - val_loss: 0.0291 - val_acc: 0.9903 3s - - ETA: 1s - l
Epoch 10/12
60000/60000 [==============================] - 17s - loss: 0.0398 - acc: 0.9879 - val_loss: 0.0287 - val_acc: 0.9898
Epoch 11/12
60000/60000 [==============================] - 16s - loss: 0.0390 - acc: 0.9887 - val_loss: 0.0309 - val_acc: 0.9903
Epoch 12/12
60000/60000 [==============================] - 17s - loss: 0.0360 - acc: 0.9891 - val_loss: 0.0314 - val_acc: 0.9906