In [1]:
from __future__ import print_function
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.datasets import load_wine
from sklearn.pipeline import make_pipeline
print(__doc__)
# Code source: Tyler Lanigan <tylerlanigan@gmail.com>
# Sebastian Raschka <mail@sebastianraschka.com>
# License: BSD 3 clause
# slight modifications by Felipe Almeida
In [18]:
RANDOM_STATE = 42
FIG_SIZE = (10, 7)
plt.clf()
features, target = load_wine(return_X_y=True)
# Make a train/test split using 30% test size
X_train, X_test, y_train, y_test = train_test_split(features, target,
test_size=0.30,
random_state=RANDOM_STATE)
# Fit to data and predict using pipelined GNB and PCA.
unscaled_clf = make_pipeline(PCA(n_components=2), GaussianNB())
unscaled_clf.fit(X_train, y_train)
pred_test = unscaled_clf.predict(X_test)
# Fit to data and predict using pipelined scaling, GNB and PCA.
std_clf = make_pipeline(StandardScaler(), PCA(n_components=2), GaussianNB())
std_clf.fit(X_train, y_train)
pred_test_std = std_clf.predict(X_test)
# Show prediction accuracies in scaled and unscaled data.
print('\nPrediction accuracy for the normal test dataset with PCA')
print('{:.2%}\n'.format(metrics.accuracy_score(y_test, pred_test)))
print('\nPrediction accuracy for the standardized test dataset with PCA')
print('{:.2%}\n'.format(metrics.accuracy_score(y_test, pred_test_std)))
# Extract PCA from pipeline
pca = unscaled_clf.named_steps['pca']
pca_std = std_clf.named_steps['pca']
# Show first principal componenets
print('\nPC 1 without scaling:\n', pca.components_[0])
print('\nPC 1 with scaling:\n', pca_std.components_[0])
# Scale and use PCA on X_train data for visualization.
scaler = std_clf.named_steps['standardscaler']
X_train_std = pca_std.transform(scaler.transform(X_train))
# visualize standardized vs. untouched dataset with PCA performed
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=FIG_SIZE)
for l, c, m in zip(range(0, 3), ('blue', 'red', 'green'), ('^', 's', 'o')):
ax1.scatter(X_train[y_train == l, 0], X_train[y_train == l, 1],
color=c,
label='class %s' % l,
alpha=0.8,
marker=m
)
for l, c, m in zip(range(0, 3), ('blue', 'red', 'green'), ('^', 's', 'o')):
ax2.scatter(X_train_std[y_train == l, 0], X_train_std[y_train == l, 1],
color=c,
label='class %s' % l,
alpha=0.8,
marker=m
)
ax1.set_title('Raw training dataset after PCA',fontsize=20)
ax2.set_title('Standardized training dataset after PCA',fontsize=20)
for ax in (ax1, ax2):
ax.set_xlabel('1st principal component',fontsize=15)
ax.set_ylabel('2nd principal component',fontsize=15)
ax.legend(loc='upper right')
ax.grid()
fig.set_size_inches(15,7.5)
plt.tight_layout()
plt.show()